银行家算法c
Ⅰ 银行家算法(操作系统)
1、这是安全状态:
P1的需求小于可用资源数,先满足P1的请求,然后回收P1资源:可用资源变为 (3,3,2)+(2,0,0)=(5,3,2);
这时P3可分配,P3结束后回收资源,可用资源为(5,3,2)+(2,1,1)=(7,4,3)
这时P0可分配,P0结束后回收资源,可用资源为(7,4,3)+(0,1,0)+(7,5,3)
接下来是P2,结束后可用资源为(7,5,3)+(3,0,2)=(10,5,5)
最后分配P4,结束后可用资源为(10,5,5)+(0,0,2)=(10,5,7)
这样得到一个安全序列:P1-P3-P0-P2-P4,所以T0状态是安全的。
2、T0时刻P1请求(1,1,2)<可用资源数(3,3,2),可以直接满足。
Ⅱ 急!银行家算法用c语言编写.全部程序.
银行家算法
银行家算法是一种最有代表性的避免死锁的算法。
要解释银行家算法,必须先解释操作系统安全状态和不安全状态。
安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。不安全状态不一定导致死锁。
那么什么是安全序列呢?
安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。
银行家算法:
我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。
算法:
n:系统中进程的总数
m:资源类总数
Available: ARRAY[1..m] of integer;
Max: ARRAY[1..n,1..m] of integer;
Allocation: ARRAY[1..n,1..m] of integer;
Need: ARRAY[1..n,1..m] of integer;
Request: ARRAY[1..n,1..m] of integer;
符号说明:
Available 可用剩余资源
Max 最大需求
Allocation 已分配资源
Need 需求资源
Request 请求资源
当进程pi提出资源申请时,系统执行下列
步骤:(“=”为赋值符号,“==”为等号)
step(1)若Request<=Need, goto step(2);否则错误返回
step(2)若Request<=Available, goto step(3);否则进程等待
step(3)假设系统分配了资源,则有:
Available=Available-Request;
Allocation=Allocation+Request;
Need=Need-Request
若系统新状态是安全的,则分配完成
若系统新状态是不安全的,则恢复原状态,进程等待
为进行安全性检查,定义数据结构:
Work:ARRAY[1..m] of integer;
Finish:ARRAY[1..n] of Boolean;
安全性检查的步骤:
step (1):
Work=Available;
Finish=false;
step (2) 寻找满足条件的i:
a.Finish==false;
b.Need<=Work;
如果不存在,goto step(4)
step(3)
Work=Work+Allocation;
Finish=true;
goto step(2)
step (4) 若对所有i,Finish=true,则系统处于安全状态,否则处于不安全状态
/* 银行家算法,操作系统概念(OS concepts Six Edition)
reedit by Johnny hagen,SCAU,run at vc6.0
*/
#include "malloc.h"
#include "stdio.h"
#include "stdlib.h"
#define alloclen sizeof(struct allocation)
#define maxlen sizeof(struct max)
#define avalen sizeof(struct available)
#define needlen sizeof(struct need)
#define finilen sizeof(struct finish)
#define pathlen sizeof(struct path)
struct allocation
{
int value;
struct allocation *next;
};
struct max
{
int value;
struct max *next;
};
struct available /*可用资源数*/
{
int value;
struct available *next;
};
struct need /*需求资源数*/
{
int value;
struct need *next;
};
struct path
{
int value;
struct path *next;
};
struct finish
{
int stat;
struct finish *next;
};
int main()
{
int row,colum,status=0,i,j,t,temp,processtest;
struct allocation *allochead,*alloc1,*alloc2,*alloctemp;
struct max *maxhead,*maxium1,*maxium2,*maxtemp;
struct available *avahead,*available1,*available2,*workhead,*work1,*work2,*worktemp,*worktemp1;
struct need *needhead,*need1,*need2,*needtemp;
struct finish *finihead,*finish1,*finish2,*finishtemp;
struct path *pathhead,*path1,*path2;
printf("\n请输入系统资源的种类数:");
scanf("%d",&colum);
printf("请输入现时内存中的进程数:");
scanf("%d",&row);
printf("请输入已分配资源矩阵:\n");
for(i=0;i<row;i++)
{
for (j=0;j<colum;j++)
{
printf("请输入已分配给进程 p%d 的 %c 种系统资源:",i,'A'+j);
if(status==0)
{
allochead=alloc1=alloc2=(struct allocation*)malloc(alloclen);
alloc1->next=alloc2->next=NULL;
scanf("%d",&allochead->value);
status++;
}
else
{
alloc2=(struct allocation *)malloc(alloclen);
scanf("%d,%d",&alloc2->value);
if(status==1)
{
allochead->next=alloc2;
status++;
}
alloc1->next=alloc2;
alloc1=alloc2;
}
}
}
alloc2->next=NULL;
status=0;
printf("请输入最大需求矩阵:\n");
for(i=0;i<row;i++)
{
for (j=0;j<colum;j++)
{
printf("请输入进程 p%d 种类 %c 系统资源最大需求:",i,'A'+j);
if(status==0)
{
maxhead=maxium1=maxium2=(struct max*)malloc(maxlen);
maxium1->next=maxium2->next=NULL;
scanf("%d",&maxium1->value);
status++;
}
else
{
maxium2=(struct max *)malloc(maxlen);
scanf("%d,%d",&maxium2->value);
if(status==1)
{
maxhead->next=maxium2;
status++;
}
maxium1->next=maxium2;
maxium1=maxium2;
}
}
}
maxium2->next=NULL;
status=0;
printf("请输入现时系统剩余的资源矩阵:\n");
for (j=0;j<colum;j++)
{
printf("种类 %c 的系统资源剩余:",'A'+j);
if(status==0)
{
avahead=available1=available2=(struct available*)malloc(avalen);
workhead=work1=work2=(struct available*)malloc(avalen);
available1->next=available2->next=NULL;
work1->next=work2->next=NULL;
scanf("%d",&available1->value);
work1->value=available1->value;
status++;
}
else
{
available2=(struct available*)malloc(avalen);
work2=(struct available*)malloc(avalen);
scanf("%d,%d",&available2->value);
work2->value=available2->value;
if(status==1)
{
avahead->next=available2;
workhead->next=work2;
status++;
}
available1->next=available2;
available1=available2;
work1->next=work2;
work1=work2;
}
}
available2->next=NULL;
work2->next=NULL;
status=0;
alloctemp=allochead;
maxtemp=maxhead;
for(i=0;i<row;i++)
for (j=0;j<colum;j++)
{
if(status==0)
{
needhead=need1=need2=(struct need*)malloc(needlen);
need1->next=need2->next=NULL;
need1->value=maxtemp->value-alloctemp->value;
status++;
}
else
{
need2=(struct need *)malloc(needlen);
need2->value=(maxtemp->value)-(alloctemp->value);
if(status==1)
{
needhead->next=need2;
status++;
}
need1->next=need2;
need1=need2;
}
maxtemp=maxtemp->next;
alloctemp=alloctemp->next;
}
need2->next=NULL;
status=0;
for(i=0;i<row;i++)
{
if(status==0)
{
finihead=finish1=finish2=(struct finish*)malloc(finilen);
finish1->next=finish2->next=NULL;
finish1->stat=0;
status++;
}
else
{
finish2=(struct finish*)malloc(finilen);
finish2->stat=0;
if(status==1)
{
finihead->next=finish2;
status++;
}
finish1->next=finish2;
finish1=finish2;
}
}
finish2->next=NULL; /*Initialization compleated*/
status=0;
processtest=0;
for(temp=0;temp<row;temp++)
{
alloctemp=allochead;
needtemp=needhead;
finishtemp=finihead;
worktemp=workhead;
for(i=0;i<row;i++)
{
worktemp1=worktemp;
if(finishtemp->stat==0)
{
for(j=0;j<colum;j++,needtemp=needtemp->next,worktemp=worktemp->next)
if(needtemp->value<=worktemp->value)
processtest++;
if(processtest==colum)
{
for(j=0;j<colum;j++)
{
worktemp1->value+=alloctemp->value;
worktemp1=worktemp1->next;
alloctemp=alloctemp->next;
}
if(status==0)
{
pathhead=path1=path2=(struct path*)malloc(pathlen);
path1->next=path2->next=NULL;
path1->value=i;
status++;
}
else
{
path2=(struct path*)malloc(pathlen);
path2->value=i;
if(status==1)
{
pathhead->next=path2;
status++;
}
path1->next=path2;
path1=path2;
}
finishtemp->stat=1;
}
else
{
for(t=0;t<colum;t++)
alloctemp=alloctemp->next;
finishtemp->stat=0;
}
}
else
for(t=0;t<colum;t++)
{
needtemp=needtemp->next;
alloctemp=alloctemp->next;
}
processtest=0;
worktemp=workhead;
finishtemp=finishtemp->next;
}
}
path2->next=NULL;
finishtemp=finihead;
for(temp=0;temp<row;temp++)
{
if(finishtemp->stat==0)
{
printf("\n系统处于非安全状态!\n");
exit(0);
}
finishtemp=finishtemp->next;
}
printf("\n系统处于安全状态.\n");
printf("\n安全序列为: \n");
do
{
printf("p%d ",pathhead->value);
}
while(pathhead=pathhead->next);
printf("\n");
return 0;
}
Ⅲ “银行家算法”是怎样的一个算法
银行家算法=-- -
1. 安全状态: 在某时刻系统中所有进程可以排列一个安全序列:{P1,P2,`````Pn},刚称此时,系统是安全的.
所谓安全序列{P1,P2,`````Pn}是指对于P2,都有它所需要剩余资源数量不大于系统掌握的剩余的空间资源与所有Pi(j<i)所占的资源之和.
2.不安全状态可能产生死锁.
目前状态 最大需求 尚需
P1 3 9 6
P2 5 10 5
P3 2 4 2
在每一次进程中申请的资源,判定一下,若实际分配的话,之后系统是否安全.
3.银行家算法的思路:
1),进程一开始向系统提出最大需求量.
2),进程每次提出新的需求(分期贷款)都统计是否超出它事先提出的最大需求量.
3),若正常,则判断该进程所需剩余剩余量(包括本次申请)是否超出系统所掌握的
剩余资源量,若不超出,则分配,否则等待.
4.银行家算法的数据结构.
1),系统剩余资源量A[n],其中A[n]表示第I类资源剩余量.
2),各进程最大需求量,B[m][n],其中B[j][i]表示进程j对i
类资源最大需求.
3),已分配资源量C[m][n],其中C[j][i]表示系统j程已得到的第i资源的数量.
4),剩余需求量.D[m][n],其中D[j][i]对第i资源尚需的数目.
5.银行家算法流程:当某时刻,某进程时,提出新的资源申请,系统作以下操作:
1),判定E[n]是否大于D[j][n],若大于,表示出错.
2),判定E[n]是否大于系统剩余量A[n],若大于,则该进程等待.
3),若以上两步没有问题,尝试分配,即各变量作调整.
4),按照安全性推测算法,判断,分配过后,系统是否安全,若安全,则实际分配,否则,撤消分配,让进程等待.
6."安全性检测"算法
1),先定义两个变量,用来表示推算过程的数据.
F[n]=A[n],表示推算过程中,系统中剩余资源量的变化.
J[n]=False表示推算过程中各进程是否假设"已完成"
2),流程:
在"剩余"的进程中(在推算)过程中,一些进程假设已完成,查找D[j][n]<=F[n]的进程,找到后令J[j]=True
(假设该进程完成),F[n]+D[j][n](该进程所占资源释放),如此循环执行.
若最后,所有的F[n]=True(在推算过程中,所有进程均可以完成),则表示(分配过后)系统是安全的,否则系统是不安全的.
参考资料:http://huangqiyu.blogchina.com/419807.html
Ⅳ 高分求银行家算法c语言版
#include "malloc.h"
#include "stdio.h"
#include "stdlib.h"
#define alloclen sizeof(struct allocation)
#define maxlen sizeof(struct max)
#define avalen sizeof(struct available)
#define needlen sizeof(struct need)
#define finilen sizeof(struct finish)
#define pathlen sizeof(struct path)
struct allocation
{
int value;
struct allocation *next;
};
struct max
{
int value;
struct max *next;
};
struct available /*可用资源数*/
{
int value;
struct available *next;
};
struct need /*需求资源数*/
{
int value;
struct need *next;
};
struct path
{
int value;
struct path *next;
};
struct finish
{
int stat;
struct finish *next;
};
int main()
{
int row,colum,status=0,i,j,t,temp,processtest;
struct allocation *allochead,*alloc1,*alloc2,*alloctemp;
struct max *maxhead,*maxium1,*maxium2,*maxtemp;
struct available *avahead,*available1,*available2,*workhead,*work1,*work2,*worktemp,*worktemp1;
struct need *needhead,*need1,*need2,*needtemp;
struct finish *finihead,*finish1,*finish2,*finishtemp;
struct path *pathhead,*path1,*path2;
printf("\n请输入系统资源的种类数:");
scanf("%d",&colum);
printf("请输入现时内存中的进程数:");
scanf("%d",&row);
printf("请输入已分配资源矩阵:\n");
for(i=0;i<row;i++)
{
for (j=0;j<colum;j++)
{
printf("请输入已分配给进程 p%d 的 %c 种系统资源:",i,'A'+j);
if(status==0)
{
allochead=alloc1=alloc2=(struct allocation*)malloc(alloclen);
alloc1->next=alloc2->next=NULL;
scanf("%d",&allochead->value);
status++;
}
else
{
alloc2=(struct allocation *)malloc(alloclen);
scanf("%d,%d",&alloc2->value);
if(status==1)
{
allochead->next=alloc2;
status++;
}
alloc1->next=alloc2;
alloc1=alloc2;
}
}
}
alloc2->next=NULL;
status=0;
printf("请输入最大需求矩阵:\n");
for(i=0;i<row;i++)
{
for (j=0;j<colum;j++)
{
printf("请输入进程 p%d 种类 %c 系统资源最大需求:",i,'A'+j);
if(status==0)
{
maxhead=maxium1=maxium2=(struct max*)malloc(maxlen);
maxium1->next=maxium2->next=NULL;
scanf("%d",&maxium1->value);
status++;
}
else
{
maxium2=(struct max *)malloc(maxlen);
scanf("%d,%d",&maxium2->value);
if(status==1)
{
maxhead->next=maxium2;
status++;
}
maxium1->next=maxium2;
maxium1=maxium2;
}
}
}
maxium2->next=NULL;
status=0;
printf("请输入现时系统剩余的资源矩阵:\n");
for (j=0;j<colum;j++)
{
printf("种类 %c 的系统资源剩余:",'A'+j);
if(status==0)
{
avahead=available1=available2=(struct available*)malloc(avalen);
workhead=work1=work2=(struct available*)malloc(avalen);
available1->next=available2->next=NULL;
work1->next=work2->next=NULL;
scanf("%d",&available1->value);
work1->value=available1->value;
status++;
}
else
{
available2=(struct available*)malloc(avalen);
work2=(struct available*)malloc(avalen);
scanf("%d,%d",&available2->value);
work2->value=available2->value;
if(status==1)
{
avahead->next=available2;
workhead->next=work2;
status++;
}
available1->next=available2;
available1=available2;
work1->next=work2;
work1=work2;
}
}
available2->next=NULL;
work2->next=NULL;
status=0;
alloctemp=allochead;
maxtemp=maxhead;
for(i=0;i<row;i++)
for (j=0;j<colum;j++)
{
if(status==0)
{
needhead=need1=need2=(struct need*)malloc(needlen);
need1->next=need2->next=NULL;
need1->value=maxtemp->value-alloctemp->value;
status++;
}
else
{
need2=(struct need *)malloc(needlen);
need2->value=(maxtemp->value)-(alloctemp->value);
if(status==1)
{
needhead->next=need2;
status++;
}
need1->next=need2;
need1=need2;
}
maxtemp=maxtemp->next;
alloctemp=alloctemp->next;
}
need2->next=NULL;
status=0;
for(i=0;i<row;i++)
{
if(status==0)
{
finihead=finish1=finish2=(struct finish*)malloc(finilen);
finish1->next=finish2->next=NULL;
finish1->stat=0;
status++;
}
else
{
finish2=(struct finish*)malloc(finilen);
finish2->stat=0;
if(status==1)
{
finihead->next=finish2;
status++;
}
finish1->next=finish2;
finish1=finish2;
}
}
finish2->next=NULL; /*Initialization compleated*/
status=0;
processtest=0;
for(temp=0;temp<row;temp++)
{
alloctemp=allochead;
needtemp=needhead;
finishtemp=finihead;
worktemp=workhead;
for(i=0;i<row;i++)
{
worktemp1=worktemp;
if(finishtemp->stat==0)
{
for(j=0;j<colum;j++,needtemp=needtemp->next,worktemp=worktemp->next)
if(needtemp->value<=worktemp->value)
processtest++;
if(processtest==colum)
{
for(j=0;j<colum;j++)
{
worktemp1->value+=alloctemp->value;
worktemp1=worktemp1->next;
alloctemp=alloctemp->next;
}
if(status==0)
{
pathhead=path1=path2=(struct path*)malloc(pathlen);
path1->next=path2->next=NULL;
path1->value=i;
status++;
}
else
{
path2=(struct path*)malloc(pathlen);
path2->value=i;
if(status==1)
{
pathhead->next=path2;
status++;
}
path1->next=path2;
path1=path2;
}
finishtemp->stat=1;
}
else
{
for(t=0;t<colum;t++)
alloctemp=alloctemp->next;
finishtemp->stat=0;
}
}
else
for(t=0;t<colum;t++)
{
needtemp=needtemp->next;
alloctemp=alloctemp->next;
}
processtest=0;
worktemp=workhead;
finishtemp=finishtemp->next;
}
}
path2->next=NULL;
finishtemp=finihead;
for(temp=0;temp<row;temp++)
{
if(finishtemp->stat==0)
{
printf("\n系统处于非安全状态!\n");
exit(0);
}
finishtemp=finishtemp->next;
}
printf("\n系统处于安全状态.\n");
printf("\n安全序列为: \n");
do
{
printf("p%d ",pathhead->value);
}
while(pathhead=pathhead->next);
printf("\n");
return 0;
}
Ⅳ 银行家算法 C语言编程
1.根据下面给出的系统中资源分配情况,以及各个进程的资源申请情况,通过银行家算法来判断各进程的资源请求能否满足(要求记录程序的运行过程)。 已分配的
Ⅵ 求大神!怎样用C/C++实现银行家算法,并实现可视化的运行界面,界面清楚地反映出系统的运行结果
用MFC(C++)可以实现
Ⅶ c语言银行家算法安全性判别
把1作为参数传给yanzheng() yanzheng(int m)
然后验证函数里修改:
work=Avaliable;
i=m;
while(i<m)
{
if(Finish[i]==false&&Need[i]<=work)
{
work=work+Allocation[i];
Finish[i]=true;
anquan[k]=i;
k++;
i=0;
}
else
i++;
}
Ⅷ 改程序——银行家算法C语言版
你是学软件的学生吗 ?
我是学软件的,我在操作系统里学了银行家算法,等我看了,在告诉你我的看法,好吗?
愿意的话希望交流一下 我的邮箱[email protected]
Ⅸ 银行家算法是通过破坏()来避免死锁的。 A 互斥条件 B部分分配条件 C不可抢占条件 D循环等待条件
A肯定是不对的,A不但不能破坏还得加强,本题答案是D 循环等待条件,银行家算法形成一个资源分配表,这样就不可能出现环路了
Ⅹ 银行家算法C++描述
#include <iostream>
#include <string>
#define M 3 //资源的种类数
#define N 5 //进程的个数
void output(int iMax[N][M],int iAllocation[N][M],int iNeed[N][M],int iAvailable[M],char cName[N]); //统一的输出格式
bool safety(int iAllocation[N][M],int iNeed[N][M],int iAvailable[M],char cName[N]);
bool banker(int iAllocation[N][M],int iNeed[N][M],int iAvailable[M],char cName[N]);
int main()
{
int i,j;
//当前可用每类资源的资源数
int iAvailable[M]={3,3,2};
//系统中N个进程中的每一个进程对M类资源的最大需求
int iMax[N][M]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};
//iNeed[N][M]每一个进程尚需的各类资源数
//iAllocation[N][M]为系统中每一类资源当前已分配给每一进程的资源数
int iNeed[N][M],iAllocation[N][M]={{0,1,1},{2,0,0},{3,0,2},{2,1,1},{0,0,2}};
//进程名
char cName[N]={'a','b','c','d','e'};
bool bExitFlag=true; //退出标记
char ch; //接收选择是否继续提出申请时传进来的值
bool bSafe; //存放安全与否的标志
//计算iNeed[N][M]的值
for(i=0;i<N;i++)
for(j=0;j<M;j++)
iNeed[i][j]=iMax[i][j]-iAllocation[i][j];
//输出初始值
output(iMax,iAllocation,iNeed,iAvailable,cName);
//判断当前状态是否安全
bSafe=safety(iAllocation,iNeed,iAvailable,cName);
//是否继续提出申请
while(bExitFlag)
{
cout<<"\n"<<"继续提出申请?\ny为是;n为否。\n";
cin>>ch;
switch(ch)
{
case 'y':
//cout<<"调用银行家算法";
bSafe=banker(iAllocation,iNeed,iAvailable,cName);
if (bSafe) //安全,则输出变化后的数据
output(iMax,iAllocation,iNeed,iAvailable,cName);
break;
case 'n':
cout<<"退出。\n";
bExitFlag=false;
break;
default:
cout<<"输入有误,请重新输入:\n";
}
}
}
//输出
void output(int iMax[N][M],int iAllocation[N][M],int iNeed[N][M],int iAvailable[M],char cName[N])
{
int i,j;
cout<<"\n\t Max \tAllocation\t Need \t Available"<<endl;
cout<<"\tA B C\tA B C\tA B C\t A B C"<<endl;
for(i=0;i<N;i++)
{
cout<<cName[i]<<"\t";
for(j=0;j<M;j++)
cout<<iMax[i][j]<<" ";
cout<<"\t";
for(j=0;j<M;j++)
cout<<iAllocation[i][j]<<" ";
cout<<"\t";
for(j=0;j<M;j++)
cout<<iNeed[i][j]<<" ";
cout<<"\t";
cout<<" ";
//Available只需要输出一次
if (i==0)
for(j=0;j<M;j++)
cout<<iAvailable[j]<<" ";
cout<<endl;
}
}
//安全性算法,进行安全性检查;安全返回true,并且输出安全序列,不安全返回false,并输出不安全的提示;
bool safety(int iAllocation[N][M],int iNeed[N][M],int iAvailable[M],char cName[N])
{
}
//定位ch对应的进程名在数组中的位置
//没找见返回-1,否则返回数组下标
int locate(char cName[N],char ch)
{
int i;
for(i=0;i<N;i++)
if (cName[i]==ch) //找到
return i;
//未找到
return -1;
}
//提出申请,返回提出申请的进程名对应的下标
int request(char cName[N],int iRequest[M])
{
int i,loc;
char ch;
bool bFlag=true;
//判断输入的进程名是否有误
while(bFlag)
{
//输出进程名
for(i=0;i<N;i++)
cout<<cName[i]<<"\t";
//输入提出申请的进程名
cout<<"\n输入提出资源申请的进程名:\n";
cin>>ch;
//定位ch对应的进程名在进程名数组中的位置
loc=locate(cName,ch);
//没找到,重新输入
if (loc==-1)
cout<<"\n您输入的进程名有误!请重新输入";
//找到,退出循环
else
bFlag=false;
}
//输入提出申请的资源数
cout<<"输入申请各类资源的数量:\n";
for(i=0;i<M;i++)
cin>>iRequest[i];
//返回提出申请的进程名对应的下标
return loc;
}
bool banker(int iAllocation[N][M],int iNeed[N][M],int iAvailable[M],char cName[N])
{
}
这个是c++的 我的报告