当前位置:首页 » 操作系统 » 随机森林算法原理

随机森林算法原理

发布时间: 2022-02-16 22:02:54

1. 随机森林算法问题!!!过拟合什么情况下会发生呢

随机森林 比adaboost 好 随机森林的优点有: 1. 对于很多种资料,它可以产生高准确度的分类器。 2. 它可以处理大量的输入变量。 3. 它可以在决定类别时,评估变量的重要性。 4. 在建造森林时,它可以在内部对于一般化后的误差产生不偏差的估计。 ...
2015-08-24 回答者: 皇族龙哥之父 1个回答 1

2. 集成学习随机森林算法问题!求大神指教!!!谢谢Thanks♪(・ω・)ノ!

为什么在某些噪音比较大的样本集上,RF的模型容易陷入过拟合? 这是为什么呢?麻烦帮忙解释一下,谢谢啦Thanks♪(・ω・)ノ!

3. 随机森林算法怎么提高预测数据的准确率

不了解什么是随机森林。感觉应该是一种算法。如果做计算机视觉建议你用OpenCV,R语言主要用在统计分析、机器学习领域。你找几篇这方面的文献看看别人跟你做类似课题时是用C++还是R。

4. 随机森林算法可以结合十折十次交叉验证吗

随机森林是bagging的一种实现,这种集成方法可以进行包外估计并输出包外误差。包外误差即可看做泛化误差的无偏估计,因此随机森林算法在实现过程中可是省掉验证集,直接用包外误差估计泛化误差。

5. 随机森林算法是什么

随机森林是一种比较新的机器学习模型。

经典的机器学习模型是神经网络,有半个多世纪的历史了。神经网络预测精确,但是计算量很大。上世纪八十年代Breiman等人发明分类树的算法(Breiman et al. 1984),通过反复二分数据进行分类或回归,计算量大大降低。

2001年Breiman把分类树组合成随机森林(Breiman 2001a),即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果。随机森林在运算量没有显着提高的前提下提高了预测精度。

随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用(Breiman 2001b),被誉为当前最好的算法之一(Iverson et al. 2008)。

随机森林优点:

随机森林是一个最近比较火的算法,它有很多的优点:

a、在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合。

b、在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力。

c、它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化。

6. 随机森林的学习算法

根据下列算法而建造每棵树:
1. 用 N 来表示训练例子的个数,M表示变量的数目。
2. 我们会被告知一个数 m ,被用来决定当在一个节点上做决定时,会使用到多少个变量。m应小于M
3. 从N个训练案例中以可重复取样的方式,取样N次,形成一组训练集(即bootstrap取样)。并使用这棵树来对剩余预测其类别,并评估其误差。
4. 对于每一个节点,随机选择m个基于此点上的变量。根据这 m 个变量,计算其最佳的分割方式。
5. 每棵树都会完整成长而不会剪枝(Pruning)(这有可能在建完一棵正常树状分类器后会被采用)。

7. 我想知道随机聚类森林算法和随机森林算法有什么不同,希望大家可以帮助我,谢谢。

通常随机森林聚类算法指代的是语义纹元森林,而随机森林算法是通常理解的基于决策树的组合分类器算法

8. 为什么随机森林算法一定会带来性能提升

随机森林是一种集成分类器,对影响随机森林性能的参数进行了分析,结果表明随机森林中树的数量对随机森林的性能影响至关重要。对树的数量的确定方法以及随机森林性能指标的评价方法进行了研究与总结。以分类精度为评价方法,利用UCI数据集对随机森

9. 随机森林算法是什么

随机森林指的是利用多棵树对样本进行训练并预测的一种分类器。该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标。

在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 而 "Random Forests" 是他们的商标。

这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。

这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造决策树的集合。

学习算法

根据下列算法而建造每棵树:

1、 用N来表示训练用例(样本)的个数,M表示特征数目。

2、 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。

3、 从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

4、 对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据这m个特征,计算其最佳的分裂方式。

5、 每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用)。

(9)随机森林算法原理扩展阅读:

基于随机森林的非监督学习

作为构建的一部分,随机森林预测器自然会导致观测值之间的不相似性度量。还可以定义未标记数据之间的随机森林差异度量:其思想是构造一个随机森林预测器,将“观测”数据与适当生成的合成数据区分开来。

观察到的数据是原始的未标记数据,合成数据是从参考分布中提取的。随机森林的不相似性度量之所以吸引人,是因为它能很好地处理混合变量类型,对输入变量的单调变换是不敏感的,而且在存在异常值的情况下度量结果依然可靠。

由于其固有变量的选择,随机森林不相似性很容易处理大量的半连续变量。

热点内容
安卓怎么设置照片格式 发布:2024-12-27 11:50:05 浏览:168
逍遥绝脚本 发布:2024-12-27 11:44:59 浏览:430
我的世界哪个服务器可以1v1 发布:2024-12-27 11:43:37 浏览:933
c语言关键字有 发布:2024-12-27 11:41:54 浏览:367
gccc语言编译命令 发布:2024-12-27 11:41:06 浏览:188
欧美版思域是什么版本配置 发布:2024-12-27 11:20:45 浏览:251
具医院的wifi密码是什么 发布:2024-12-27 11:20:07 浏览:77
dll服务器如何重启 发布:2024-12-27 11:19:58 浏览:953
安卓怎么把视频变成模糊 发布:2024-12-27 11:18:37 浏览:962
oracle分页sql怎么写 发布:2024-12-27 11:02:02 浏览:846