当前位置:首页 » 操作系统 » 时域分解算法

时域分解算法

发布时间: 2024-10-24 06:32:05

① 什么叫EMD

EMD(Empirical Mode Decomposition)算法1995年由NASA海洋水波实验室提出,本质上是一种将时域信号按频率尺度分解的数值算法,对于线性时不变系统,它可以从时域信号中直接提取具有不同特征时间尺度的内禀模式函数(IMF,Intrinsic Mode Function),分解得到的IMFs之间具有正交性,且分解唯一.本文以此为基础,将NExT(Natural Excitation Technique)方法推广到多点随机激励下的复模态情况,对多自由度线性系统实测响应信号的互相关函数进行EMD分解,并进而实现模态参数的辨识.

② HFSS算法及应用场景介绍

安氏

前言

相信每一位使用过HFSS的工程师都有一个疑问或者曾经有一个疑问:我怎么才能使用HFSS计算的又快又准?对使用者而言,每个工程师遇到的工程问题不一样,工程经验不能够直接复制;对软件而言,随着HFSS版本的更新,HFSS算法越来越多,针对不同的应用场景对应不同的算法。因此,只有实际工程问题切合合适的算法,才能做到速度和精度的平衡。工程师在了解软件算法的基础上,便能够针对自己的需求进行很好的算法选择。

由于当今世界计算机的飞速发展,让计算电磁学这门学科也有了很大的发展,如图1所示,从大的方面来看,我们将计算电磁学分为精确的全波算法和高频近似算法,在每一类下面又分了很多种算法,结合到HFSS软件,通过ANSYS公司40余年来坚持不懈的研发和战略性的收购,到目前为止,HFSS有FEM、IE(MoM)、DGTD、PO、SBR+等算法,本文会针对每种算法和应用场景逐一介绍,相信你看完这篇文章应该对HFSS算法和应用场景会有更深的认识。

算法介绍

全波算法-有限元算法( FEM)

有限元算法是ANSYS HFSS的核心算法,已有二十多年的商用历史,也是目前业界最成熟稳定的三维电磁场求解器,有限元算法的优点是具有极好的结构适应性和材料适应性,充分考虑材料特性:趋肤效应、介质损耗、频变材料;是精确求解复杂材料复杂结构问题的最佳利器,有限元算法采用四面体网格,对仿真物体能够很好的进行还原。

FEM算法的支配方程见下图:

HFSS有限元算法在网格划分方面能够支持自适应网格剖分、网格加密、曲线型网格,在求解时支持切向矢量基函数、混合阶基函数和直接法、迭代法、区域分解法的强大的矩阵求解技术。

在应用领域,HFSS主要针对复杂结构进行求解,尤其是对于一些内部问题的求解,比高速信号完整性分析,阵列天线设计,腔体问题及电磁兼容等应用场景,非常适合有限元算法求解。

有限元算法结合ANSYS公司的HPC模块,ANSYS HFSS有限元算法可以进行电大尺寸物体的计算,大幅度提升仿真工程师的工作效率。针对宽带问题,FEM推出了宽带自适应网格剖分,大大提升了仿真精度。

全波算法-积分方程算法( IE)

积分方程算法基于麦克斯维方程的积分形式,同时也基于格林函数,所以可自动满足辐射边界条件,对于简单模型及材料的辐射问题,具有很大的优势,但原始的积分方程法计算量太大,很难用于实际的数值计算中,针对此问题, HFSS 中的 IE算法提供了两种加速算法,一种是 ACA 加速,一种是 MLFMM,分布针对不同的应用类型。 ACA 方法基于数值层面的加速技术,具有更好的普适性,但效率相比 MLFMM 稍差, MLFMM 算法基于网格层面的加速,对金属材料,松散结构,具有更高的效率。

IE算法的支配方程见下图:

IE算法是三维矩量法积分方程技术,支持三角形网格剖分。IE算法不需要像FEM算法一样定义辐射边界条件,在HFSS中主要用于高效求解电大尺寸、开放结构问题。与HFSS FEM算法一样,支持自适应网格技术,也可以高精度、高效率解决客户问题,同时支持将FEM的场源链接到IE中进行求解。HFSS-IE算法对金属结构具有很高的适应性,其主要应用领域天线设计、天线布局、 RCS、 EMI/EMC仿真等方向。

高频近似算法-PO算法

FEM算法和IE算法是精确的全波算法,在超大电尺寸问题上,使用精确全波算法会造成效率的降低。针对超大电尺寸问题,ANSYS推出PO(物理光学法)算法,PO 算法属于高频算法,非常适合求解此类问题,在适合其求解的问题中,具有非常好的效率优势。

PO算法主要原理为射线照射区域产生感应电流,而且在阴影区域设置为零电流,不考虑射线追迹或多次反射,以入射波作为激励源,将平面波或链接FEM(IE)的场数据作为馈源。但由于不考虑射线的多次反射和绕射等现象,一般针对物理尺寸超大,结构均匀的物体电磁场计算,在满足精度的要求,相比全波算法效率明显提高。比如大平台上的天线布局,大型反射面天线等等。

高频近似算法-SBR+算法

PO算法可以解决超大电尺寸问题的计算,但由于未考虑到多次反射等物理物体,主要用于结构均匀物理的电磁场计算。针对复杂结构且超大电尺寸问题,ANSYS通过收购Delcross公司(Savant软件)引入了SBR+算法, SBR+是在SBR算法(天线发射出射线,在表面“绘制” PO电流)的基础上考虑了爬行波射线(沿着表面追迹射线)、物理绕射理论PTD(修正边缘处的PO电流)、一致性绕射理论UTD(沿着边缘发射衍射射线,绘制阴影区域的电流),因此SBR+算法是高频射线方法,具有非常高效的速度,同时具有非常好的精度,在大型平台的天线布局中效果非常好。

SBR+支持从FEM、IE中导入远场辐射方向图或者电流源,也支持导入相应的测试数据,SBR+算法主要用于天线安装分析,支持多核、GPU等并行求解方式并且大多数任务可在低于8 GB内存下完成。

混合算法( FEBI, IE-Region,PO-Region,SBR+ Region)

前面对频率内的各种算法做了介绍并说明了各种算法应用的场景,很多时候碰到的工程问题既包括复杂结构物理也包括超大尺寸物理,如新能源汽车上的天线布局问题,对仿真而言,最好的精度是用全波算法求解,最快的速度是采用近似算求解,针对该问题,ANSYS公司将FEM算法、 IE 算法、PO 算法、SBR+算法等融合起来,推出混合算法。在一个应用案例中,采用不同算法的优点而回避不同算法的缺点,可极大限度的提高算法的效率,以及成为频域内解决大型复杂问题的必备算法。

HFSS中FEM与IE可以通过IE Region与FEBI边界进行混合求解,FEM与PO、SBR+算法可以通过添加PO Region及SBR+ Region进行混合,混合算法的使用扩大了HFSS的使用范围。

时域算法-transient算法

HFSS时域求解是基于间断伽略金法(discontinuous Galerkin method, DGTD)的三维全波电磁场仿真求解器,采用基于四面体有限元技术,能得到和HFSS频域求解器一样的自适应网格剖分精度,该技术使得HFSS的求精精度成为电磁场行业标准。这项技术完善了HFSS的频域求解器技术,帮助工程师对更加深入详细了解其所设计器件的电磁性能。

Transient算法支配方程见下图:

采用HFSS-Transient算法,工程师可利用短脉冲激励对静电放电、电磁干扰、雷击和等应用问题开展研究,还包括时域反射阻抗以及短时激励下的瞬态场显示也可以借助它来完成。

谐振分析-Eigenmode算法

谐振特性是每个结构都存在固有的电磁谐振,谐振的模式、频率和品质因子,与其结构尺寸相关,这些谐振既可能是干扰源的放大器,也可能是敏感电路的噪声接收器。谐振会导致信号完整性、电源完整性和电磁兼容问题,因而了解谐振对加强设计可靠性很有帮助。

Eigenmode算法支配方程见下图:

在HFSS中,使用eigenmode算法可计算三维结构谐振模式,并可呈现图形化空间的谐振电压波动,分析结构的固有谐振特性。依据谐振分析的结果,指导机箱内设备布局和PCB层叠布局,改善电磁兼容特性。

总结

HFSS里面有各种不同的算法,有全波算法、近似算法以及时域算法,工程师可以格局需要选择不同算法(最高的精度和最高的效率)。首先针对频域算法,使用范围见图14,通常FEM算法和IE算法非常适合于中小尺寸问题,对大型问题,FEM/IE运行时间/内存需求非常巨大; PO方法适合解决超大电尺寸问题,但对问题复杂度有限制,通常通常不能提供客户所期望的精度,但对于均匀物体是一个很好的选择;SBR+算法适合解决超大电尺寸问题,对复杂结构也能够提供很好的精度和速度;针对既有电小尺寸复杂结构计算问题,又有电大尺寸布局计算问题,混合算法是一个很好的选择。Transient算法适合解决与时间相关的电磁场问题,如ESD、TDR等;Eigenmode算法专门针对谐振仿真。

想要更多,点击此处,关注技术邻官网

热点内容
phpjava架构 发布:2025-01-10 10:56:06 浏览:382
python二维排序 发布:2025-01-10 10:56:00 浏览:607
南水北调怎么配置 发布:2025-01-10 10:55:27 浏览:119
广数980系统参数密码是多少 发布:2025-01-10 10:55:25 浏览:577
androidhtml字体 发布:2025-01-10 10:55:01 浏览:787
数据库连接工厂模式 发布:2025-01-10 10:51:00 浏览:487
mac文件夹路径设置 发布:2025-01-10 10:48:12 浏览:803
shell脚本自动密码 发布:2025-01-10 10:46:29 浏览:766
安卓手机怎么切两个屏 发布:2025-01-10 10:33:51 浏览:684
python上传图片 发布:2025-01-10 10:30:54 浏览:206