linuxsocket进程
‘壹’ linux怎么使用ss命令查看系统的socket状态
ss是Socket Statistics的缩写。顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容。但ss的优势在于它能够显示更多更详细的有关TCP和连接状态的信息,而且比netstat更快速更高效。当服务器的socket连接数量变得非常大时,无论是使用netstat命令还是直接cat /proc/net/tcp,执行速度都会很慢。可能你不会有切身的感受,但请相信我,当服务器维持的连接达到上万个的时候,使用netstat等于浪费 生命,而用ss才是节省时间。天下武功唯快不破。ss快的秘诀在于,它利用到了TCP协议栈中tcp_diag。tcp_diag是一个用于分析统计的模块,可以获得Linux 内核中第一手的信息,这就确保了ss的快捷高效。当然,如果你的系统中没有腔激tcp_diag,ss也可以正常运行,只是效率会变得稍慢。(但仍然比 netstat要快。)
命令格式:
ss [参数]
ss [参数] [过滤]
2.命令功能:
ss(Socket Statistics的缩写)命令可以用来获取 socket统计信息,此命令输出的结果类似于 netstat输出的内容,但它能显示更多更详细的 TCP连接状态的信息,且比 netstat 更快速高效。它使用了 TCP协议栈中 tcp_diag(是一个用于分析统计的模块),能直接从获得第一手内核信息,这就使得 ss命令快捷高效。在没有 tcp_diag,ss也可以正常运行。
3.命令参数:
-h, --help 帮助信息
-V, --version 程序版本信息
-n, --numeric 不解析服务名称
-r, --resolve 解析主机名
-a, --all 显示所有套接字(sockets)
-l, --listening 显示监听状态的套接字(sockets)
-o, --options 显示计时器信息
-e, --extended 显示详细的套接字(sockets)信息
-m, --memory 显示套接字(socket)的内存使用情况
-p, --processes 显示核圆消使用套接字(socket)的进程
-i, --info 显示 TCP内部信息
-s, --summary 显示套接字(socket)使用概况
-4, --ipv4 仅显示IPv4的套接字(sockets)
-6, --ipv6 仅显示IPv6的套接字(sockets)
-0, --packet 显示 PACKET 套接字(socket)
-t, --tcp 仅显示 TCP套接字(sockets)
-u, --udp 仅显示 UCP套接字(sockets)
-d, --dccp 仅显示 DCCP套接字(sockets)
-w, --raw 仅显示 RAW套接字(sockets)
-x, --unix 仅显示 Unix套接字(sockets)
-f, --family=FAMILY 显示 FAMILY类型的套接字(sockets),FAMILY可选,支持 unix, inet, inet6, link, netlink
-A, --query=QUERY, --socket=QUERY
QUERY := {all|inet|tcp|udp|raw|unix|packet|netlink}[,QUERY]
-D, --diag=FILE 将原始TCP套接字(sockets)信息转储到文件
-F, --filter=FILE 从文件中都去过滤器信息改知
FILTER := [ state TCP-STATE ] [ EXPRESSION ]
4.使用实例:
实例1:显示TCP连接
命令:ss -t -a
输出:
代码如下:
[root@localhost ~]# ss -t -a
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 0 127.0.0.1:smux *:*
LISTEN 0 0 *:3690 *:*
LISTEN 0 0 *:ssh *:*
ESTAB 0 0 192.168.120.204:ssh 10.2.0.68:49368
[root@localhost ~]#
实例2:显示 Sockets 摘要
命令:ss -s
输出:
代码如下:
[root@localhost ~]# ss -s
Total: 34 (kernel 48)
TCP: 4 (estab 1, closed 0, orphaned 0, synrecv 0, timewait 0/0), ports 3《/p》 《p》Transport Total IP IPv6
* 48 - -
RAW 0 0 0
UDP 5 5 0
TCP 4 4 0
INET 9 9 0
FRAG 0 0 0
[root@localhost ~]#
说明:列出当前的established, closed, orphaned and waiting TCP sockets
实例3:列出所有打开的网络连接端口
命令:ss -l
输出:
代码如下:
[root@localhost ~]# ss -l
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 127.0.0.1:smux *:*
0 0 *:3690 *:*
0 0 *:ssh *:*
[root@localhost ~]#
实例4:查看进程使用的socket
命令:ss -pl
输出:
代码如下:
[root@localhost ~]# ss -pl
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 127.0.0.1:smux *:* users:((“snmpd”,2716,8))
0 0 *:3690 *:* users:((“svnserve”,3590,3))
0 0 *:ssh *:* users:((“sshd”,2735,3))
[root@localhost ~]#
实例5:找出打开套接字/端口应用程序
命令:ss -lp | grep 3306
输出:
代码如下:
[root@localhost ~]# ss -lp|grep 1935
0 0 *:1935 *:* users:((“fmsedge”,2913,18))
0 0 127.0.0.1:19350 *:* users:((“fmsedge”,2913,17))
[root@localhost ~]# ss -lp|grep 3306
0 0 *:3306 *:* users:((“mysqld”,2871,10))
[root@localhost ~]#
实例6:显示所有UDP Sockets
命令:ss -u -a
输出:
代码如下:
[root@localhost ~]# ss -u -a
State Recv-Q Send-Q Local Address:Port Peer Address:Port
UNCONN 0 0 127.0.0.1:syslog *:*
UNCONN 0 0 *:snmp *:*
ESTAB 0 0 192.168.120.203:39641 10.58.119.119:domain
[root@localhost ~]#
实例7:显示所有状态为established的SMTP连接
命令:ss -o state established ‘( dport = :smtp or sport = :smtp )’
输出:
代码如下:
[root@localhost ~]# ss -o state established ‘( dport = :smtp or sport = :smtp )’
Recv-Q Send-Q Local Address:Port Peer Address:Port
[root@localhost ~]#
实例8:显示所有状态为Established的HTTP连接
命令:ss -o state established ‘( dport = :http or sport = :http )’
输出:
代码如下:
[root@localhost ~]# ss -o state established ‘( dport = :http or sport = :http )’
Recv-Q Send-Q Local Address:Port Peer Address:Port
0 0 75.126.153.214:2164 192.168.10.42:http
[root@localhost ~]#
实例9:列举出处于 FIN-WAIT-1状态的源端口为 80或者 443,目标网络为 193.233.7/24所有 tcp套接字
命令:ss -o state fin-wait-1 ‘( sport = :http or sport = :https )’ dst 193.233.7/24
实例10:用TCP 状态过滤Sockets:
命令:
代码如下:
ss -4 state FILTER-NAME-HERE
ss -6 state FILTER-NAME-HERE
输出:
代码如下:
[root@localhost ~]#ss -4 state closing
Recv-Q Send-Q Local Address:Port Peer Address:Port
1 11094 75.126.153.214:http 192.168.10.42:4669
说明:
FILTER-NAME-HERE 可以代表以下任何一个:
代码如下:
established
syn-sent
syn-recv
fin-wait-1
fin-wait-2
time-wait
closed
close-wait
last-ack
listen
closing
all : 所有以上状态
connected : 除了listen and closed的所有状态
synchronized :所有已连接的状态除了syn-sent
bucket : 显示状态为maintained as minisockets,如:time-wait和syn-recv.
big : 和bucket相反。
实例11:匹配远程地址和端口号
命令:
代码如下:
ss dst ADDRESS_PATTERN
ss dst 192.168.1.5
ss dst 192.168.119.113:http
ss dst 192.168.119.113:smtp
ss dst 192.168.119.113:443
输出:
代码如下:
[root@localhost ~]# ss dst 192.168.119.113
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:20229
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:61056
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:61623
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:60924
ESTAB 0 0 192.168.119.103:16050 192.168.119.113:43701
ESTAB 0 0 192.168.119.103:16073 192.168.119.113:32930
ESTAB 0 0 192.168.119.103:16073 192.168.119.113:49318
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:3844
[root@localhost ~]# ss dst 192.168.119.113:http
State Recv-Q Send-Q Local Address:Port Peer Address:Port
[root@localhost ~]# ss dst 192.168.119.113:3844
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16014 192.168.119.113:3844
[root@localhost ~]#
实例12:匹配本地地址和端口号
命令:
代码如下:
ss src ADDRESS_PATTERN
ss src 192.168.119.103
ss src 192.168.119.103:http
ss src 192.168.119.103:80
ss src 192.168.119.103:smtp
ss src 192.168.119.103:25
输出:
代码如下:
[root@localhost ~]# ss src 192.168.119.103:16021
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:63054
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:62894
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:63055
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:2274
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:44784
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:7233
ESTAB 0 0 192.168.119.103:16021 192.168.119.103:58660
ESTAB 0 0 192.168.119.103:16021 192.168.119.201:44822
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56737
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:57487
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56736
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:64652
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56586
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:64653
ESTAB 0 0 192.168.119.103:16021 10.2.1.206:56587
[root@localhost ~]#
实例13:将本地或者远程端口和一个数比较
命令:
代码如下:
ss dport OP PORT
ss sport OP PORT
输出:
代码如下:
[root@localhost ~]# ss sport = :http
[root@localhost ~]# ss dport = :http
[root@localhost ~]# ss dport \》 :1024
[root@localhost ~]# ss sport \》 :1024
[root@localhost ~]# ss sport \《 :32000
[root@localhost ~]# ss sport eq :22
[root@localhost ~]# ss dport != :22
[root@localhost ~]# ss state connected sport = :http
[root@localhost ~]# ss \( sport = :http or sport = :https \)
[root@localhost ~]# ss -o state fin-wait-1 \( sport = :http or sport = :https \) dst 192.168.1/24
说明:
ss dport OP PORT 远程端口和一个数比较;ss sport OP PORT 本地端口和一个数比较。
OP 可以代表以下任意一个:
《= or le : 小于或等于端口号
》= or ge : 大于或等于端口号
== or eq : 等于端口号
!= or ne : 不等于端口号
《 or gt : 小于端口号
》 or lt : 大于端口号
实例14:ss 和 netstat 效率对比
命令:
代码如下:
time netstat -at
time ss
输出:
代码如下:
[root@localhost ~]# time ss
real 0m0.739s
user 0m0.019s
sys 0m0.013s
[root@localhost ~]#
[root@localhost ~]# time netstat -at
real 2m45.907s
user 0m0.063s
sys 0m0.067s
[root@localhost ~]#
说明:
用time 命令分别获取通过netstat和ss命令获取程序和概要占用资源所使用的时间。在服务器连接数比较多的时候,netstat的效率完全没法和ss比。
‘贰’ linux下的 socket编程问题!
第一个问题:
对,是那样的,用open打开文件,用read读取文件,在发送给对方,接收方接收到后,写入文件就可以了。不过在这个过程中最好别用字符串函数,除非你很熟悉。
第二个问题
首先你得去搞清楚什么是线程,什么是进程,fork出来的叫进程,pthread_create出来的才叫线程。服务器有很多种模型(多进程,多线程,select,epoll模型,这个我的blog上有,famdestiny.cublog.cn),不一定要用多进程。
给你写了个代码,自己先看看:
注意,在自己的目录下创建一个叫pserverb的文件,程序会把这个文件复制成test文件。你可以自己根据需要改改
server:
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <string.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#define SERV_PORT 5358
#define MAX_CONN 10
#define BUF_LEN 1024
void str_echo(FILE *fp, int sockfd){
ssize_t nread;
int file_fd;
char buf[BUF_LEN] = {0};
file_fd = open("test", O_WRONLY | O_TRUNC | O_CREAT, 0755);
while(1) {
bzero(buf, BUF_LEN);
if((nread = read(sockfd, buf, BUF_LEN)) == -1) {
if(errno == EINTR) {
continue;
}
else {
printf("readn error: %s\n", strerror(errno));
continue;
}
}
else if (nread == 0) {
break;
}
else {
printf("%s\n", buf);
write(file_fd, buf, nread);
}
}
close(file_fd);
}
void sig_chld(int sig){
pid_t pid;
int state;
while((pid = waitpid(-1, &state, WNOHANG)) > 0){
printf("child process %d exited.", pid);
}
return;
}
int main(int argc, char **argv)
{
int listenfd, connfd;
socklen_t cliaddrlen;
pid_t childpid;
struct sockaddr_in servaddr, cliaddr;
if((listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1){
printf("socket error: %s\n", strerror(errno));
return 0;
}
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);
if(bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) == -1){
printf("bind error: %s\n", strerror(errno));
return 0;
}
if(listen(listenfd, MAX_CONN) == -1){
printf("listen error: %s\n", strerror(errno));
return 0;
}
signal(SIGCHLD, sig_chld);
while(1){
cliaddrlen = sizeof(cliaddr);
if((connfd = accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddrlen)) == -1){
if(errno == EINTR){
continue;
}
else{
printf("accept error: %s\n", strerror(errno));
continue;
}
}
if((childpid = fork()) == 0){
close(listenfd);
str_echo(stdin, connfd);
exit(0);
}
else if(childpid > 0){
close(connfd);
}
else{
printf("fork error!\n");
continue;
}
}
}
client:
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#define SERV_ADDR "127.0.0.1"
#define SERV_PORT 5358
#define BUF_LEN 1024
void str_cli(char *path, int sockfd)
{
char sendbuf[BUF_LEN] = {0};
int fd, n;
if((fd = open("./pserverb", O_RDONLY)) == -1){
printf("%s\n", strerror(errno));
exit(0);
}
while((n = read(fd, sendbuf, BUF_LEN)) != 0) {
if(n < 0){
printf("%s\n", strerror(errno));
exit(0);
}
write(sockfd, sendbuf, n);
bzero(sendbuf, BUF_LEN);
}
close(fd);
return;
}
int main(int argc, char **argv)
{
int fd;
struct sockaddr_in servaddr;
fd = socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(SERV_ADDR);
servaddr.sin_port = htons(SERV_PORT);
if (connect(fd, (struct sockaddr *)&servaddr, sizeof(servaddr)) == -1) {
printf("connect error: %s\n", strerror(errno));
return 0;
}
str_cli(argv[1], fd);
return 0;
}
‘叁’ Linux 进程间套接字通信(Socket)基础知识
姓名:罗学元 学号:21181214375 学院:广州研究院
【嵌牛导读】Linux进程间套接字通信基础
【嵌牛鼻子】Linux 进程间套接字及通信介绍
【嵌牛提问】Linux进程间套接字包含哪些内容,如何实现通信
一、套接字(Socket)通信原理
套接字通信允许互联的位于不同计算机上的进程之间实现通信功能。
二、套接字的属性
套接字的特性由3个属性确定,它们分别是:域、类型和协议。
1. 套接字的域
它指定套接字通信中使用的网络介质,最常见的套接字域是AF_INET,它指的是Internet网络。当客户使用套接字进行跨网络的连接时,它就需要用到服务器计算机的IP地址和端口来指定一台联网机器上的某个特定服务,所以在使用socket作为通信的终点,服务器应用程序必须在开始通信之前绑定一个端口,服务器在指定的端口等待客户的连接。
另一个域AF_UNIX表示UNIX文件系统,就是文件输入/输出,它的地址就是文件名。
2. 套接字类型
因特网提供了两种通信机制:流(stream)和数据报(datagram),因而套接字的类型也就分为流套接字和数据报套接字。我们主要看流套接字。
流套接字由类型SOCK_STREAM指定,它们是在AF_INET域中通过TCP/IP连接实现,同时也是AF_UNIX中常用的套接字类型。
流套接字提供的是一个有序、可靠、双向字节流的连接,因此发送的数据可以确保不会丢失、重复或乱序到达,而且它还有一定的出错后重新发送的机制。
与流套接字相对的是由类型SOCK_DGRAM指定的数据报套接字,它不需要建立连接和维持一个连接,它们在AF_INET中通常是通过UDP/IP实现的。它对可以发送的数据的长度有限制,数据报作为一个单独的网络消息被传输,它可能丢失、复制或错乱到达,UDP不是一个可靠的协议,但是它的速度比较高,因为它并不需要总是要建立和维持一个连接。
3.套接字协议
只要底层的传输机制允许不止一个协议来提供要求的套接字类型,我们就可以为套接字选择一个特定的协议。通常只需要使用默认值。
三、套接字地址
每个套接字都有其自己的地址格式,对于AF_UNIX域套接字来说,它的地址由结构sockaddr_un来描述,该结构定义在头文件
struct sockaddr_un{
sa_family_t sun_family; //AF_UNIX,它是一个短整型
char sum_path[]; //路径名
};
对于AF_INET域套接字来说,它的地址结构由sockaddr_in来描述,它至少包括以下几个成员:
struct sockaddr_in{
short int sin_family; //AN_INET
unsigned short int sin_port; //端口号
struct in_addr sin_addr; //IP地址
}
而in_addr被定义为:
struct in_addr{
unsigned long int s_addr;
}
四、基于流套接字的客户/服务器的工作流程
使用socket进行进程通信的进程采用的客户/服务器系统是如何工作的呢?
1.服务器端
首先,服务器应用程序用系统调用socket来创建一个套接字,它是系统分配给该服务器进程的类似文件描述符的资源,它不能与其他的进程共享。
接下来,服务器进程会给套接字起个名字,我们使用系统调用bind来给套接字命名。然后服务器进程就开始等待客户连接到这个套接字。
然后,系统调用listen来创建一个队列,并将其用于存放来自客户的进入连接。
最后,服务器通过系统调用accept来接受客户的连接。它会创建一个与原有的命名套接不同的新套接字,这个套接字只用于与这个特定客户端进行通信,而命名套接字(即原先的套接字)则被保留下来继续处理来自其他客户的连接。
2.客户端
基于socket的客户端比服务器端简单。同样,客户应用程序首先调用socket来创建一个未命名的套接字,然后讲服务器的命名套接字作为一个地址来调用connect与服务器建立连接。
一旦连接建立,我们就可以像使用底层的文件描述符那样用套接字来实现双向数据的通信。