基于内容的推荐算法
① 推荐系统的主要推荐方法
基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料。在基于内容的推荐系统中,项目或对象是通过相关的特征的属性来定义,系统基于用户评价对象 的特征,学习用户的兴趣,考察用户资料与待预测项目的相匹配程度。用户的资料模型取决于所用学习方法,常用的有决策树、神经网络和基于向量的表示方法等。 基于内容的用户资料是需要有用户的历史数据,用户资料模型可能随着用户的偏好改变而发生变化。
基于内容推荐方法的优点是:1)不需要其它用户的数据,没有冷开始问题和稀疏问题。2)能为具有特殊兴趣爱好的用户进行推荐。3)能推荐新的或不是很流行的项目,没有新项目问题。4)通过列出推荐项目的内容特征,可以解释为什么推荐那些项目。5)已有比较好的技术,如关于分类学习方面的技术已相当成熟。
缺点是要求内容能容易抽取成有意义的特征,要求特征内容有良好的结构性,并且用户的口味必须能够用内容特征形式来表达,不能显式地得到其它用户的判断情况。 协同过滤推荐 (Collaborative Filtering Recommendation)技术是推荐系统中应用最早和最为成功的技术之一。它一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后 利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐。协同过滤最大优 点是对推荐对象没有特殊的要求,能处理非结构化的复杂对象,如音乐、电影。
协同过滤是基于这样的假设:为一用户找到他真正感兴趣的内容的好方法是首先找到与此用户有相似兴趣的其他用户,然后将他们感兴趣的内容推荐给此用 户。其基本思想非常易于理解,在日常生活中,我们往往会利用好朋友的推荐来进行一些选择。协同过滤正是把这一思想运用到电子商务推荐系统中来,基于其他用 户对某一内容的评价来向目标用户进行推荐。
基于协同过滤的推荐系统可以说是从用户的角度来进行相应推荐的,而且是自动的即用户获得的推荐是系统从购买模式或浏览行为等隐式获得的,不需要用户努力地找到适合自己兴趣的推荐信息,如填写一些调查表格等。
和基于内容的过滤方法相比,协同过滤具有如下的优点:1) 能够过滤难以进行机器自动内容分析的信息,如艺术品,音乐等。2) 共享其他人的经验,避免了内容分析的不完全和不精确,并且能够基于一些复杂的,难以表述的概念(如信息质量、个人品味)进行过滤。3) 有推荐新信息的能力。可以发现内容上完全不相似的信息,用户对推荐信息的内容事先是预料不到的。这也是协同过滤和基于内容的过滤一个较大的差别,基于内容的过滤推荐很多都是用户本来就熟悉的内容,而协同过滤可以发现用户潜在的但自己尚未发现的兴趣偏好。4) 能够有效的使用其他相似用户的反馈信息,较少用户的反馈量,加快个性化学习的速度。
虽然协同过滤作为一种典型的推荐技术有其相当的应用,但协同过滤仍有许多的问题需要解决。最典型的问题有稀疏问题(Sparsity)和可扩展问题(Scalability)。 基于关联规则的推荐 (Association Rule-based Recommendation)是以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零 售业中已经得到了成功的应用。管理规则就是在一个交易数据库中统计购买了商品集X的交易中有多大比例的交易同时购买了商品集Y,其直观的意义就是用户在购 买某些商品的时候有多大倾向去购买另外一些商品。比如购买牛奶的同时很多人会同时购买面包。
算法的第一步关联规则的发现最为关键且最耗时,是算法的瓶颈,但可以离线进行。其次,商品名称的同义性问题也是关联规则的一个难点。 由于各种推荐方法都有优缺点,所以在实际中,组合推荐(Hybrid Recommendation)经常被采用。研究和应用最多的是内容推荐和协同过滤推荐的组合。最简单的做法就是分别用基于内容的方法和协同过滤推荐方法 去产生一个推荐预测结果,然后用某方法组合其结果。尽管从理论上有很多种推荐组合方法,但在某一具体问题中并不见得都有效,组合推荐一个最重要原则就是通 过组合后要能避免或弥补各自推荐技术的弱点。
在组合方式上,有研究人员提出了七种组合思路:1)加权(Weight):加权多种推荐技术结果。2)变换(Switch):根据问题背景和实际情况或要求决定变换采用不同的推荐技术。3)混合(Mixed):同时采用多种推荐技术给出多种推荐结果为用户提供参考。4)特征组合(Feature combination):组合来自不同推荐数据源的特征被另一种推荐算法所采用。5)层叠(Cascade):先用一种推荐技术产生一种粗糙的推荐结果,第二种推荐技术在此推荐结果的基础上进一步作出更精确的推荐。6)特征扩充(Feature augmentation):一种技术产生附加的特征信息嵌入到另一种推荐技术的特征输入中。7)元级别(Meta-level):用一种推荐方法产生的模型作为另一种推荐方法的输入。
② 关于算法
阿朱对于算法的了解不多,总结如下,希望多多交流,改正瑕疵。
算法推荐主要有5种方式:
基于内容推荐:这是基于用户个人兴趣的推荐。根据用户个体的历史行为,计算对内容特征的偏好程度,进而推荐出与用户特征偏好匹配的内容。
协同过滤算法:这是基于群体的推荐。基于用户的相似度、内容的共现度,以及基于人口特征将用户聚集为不同群体来推荐。(解释一下:常见的协同过滤算法有两种,一种是基于用户的(user-based),也即计算用户之间的相似性,如果A和B的兴趣相近,那么A喜欢的电影,B也很有可能喜欢。另一种是基于物品的(item-based),也即计算物品之间的相似性,如果电影C和电影D很相似,那么喜欢电影C的人,可能也会喜欢电影D。)
扩展推荐:基于用户兴趣点、内容类别等扩展。(你喜欢历史资讯,我推考古、寻宝的资讯给你)
新热推荐:基于全局内容的时效性、热度推荐。(在产品初期同时缺乏用户数据和内容数据时,内容分发效率很低。使用基于内容推荐算法效果不显着,而使用一些热点话题可在保证一定流量的同时,不断通过用户的个人行为(点赞、评论、浏览、收藏)来逐步精确用户画像和进行内容沉淀,为之后的个性化推荐做准备)。
环境特征:基于地域、时间、场景等推荐。(知乎上你们市的牙科诊所广告、婚庆广告)
每种算法的效果不一,组合味道更佳,因此很多公司都是采用“算法矩阵”的方式来推荐feed。(后文也会谈到这一点)
优势:
内容质量审核、社区治理(辱骂、撕逼),推荐商品,减少人工运营成本。
源源不断推荐给你感兴趣的feed,提升了用户粘性,商业化的潜力进一步加大。
让用户 kill time 的需求更好地被满足,增强用户体验
弊端:
1.算法本身或者算法背后的人产生技术错误——只要是人写的算法,就一定有出错的概率,比如德国居民凌晨发飙的智能音箱、失控的Uber自动驾驶汽车就是程序上的Bug导致的,这一类我们克服的办法其实相对简单。但对于另一种人为算计消费者的算法有时候可能我们就无能为力了,比如大数据杀熟现象,无论真实与否,这类问题往往很难识别,因此也加大了监管的难度;(抖音视频里你见不到“钱”字,只能看到“Q”来代替)
2.算法对于人性部分的忽略——现在的人工智能离真正理解人类的感情和行为依然有巨大的鸿沟,Facebook提醒你给去世的亲人发生日祝福背后本质的原因在于AI无法真正理解死亡对于人类意味着什么;因此需要人机结合(平台人工参与,用户举报等自治措施),不能单独依靠算法。
3.算法训练数据本身的偏见——目前人工智能的基本逻辑是先构建一个合适的机器学习模型,然后用大量的数据去训练模型,然后用训练好的模型再来预测新的数据,这里边有一个非常重要前提就是输入数据的重要性,比如变坏的微软机器人Tay之所以产生问题就是因为输入的数据中本身就存在偏见,如果现实世界数据本身就存在偏见,那么预测结果也一定会有偏见;
先下结论吧:算法不会导致“信息茧房”
“社交媒体和算法推荐导致信息茧房”这一判断成立的一个重要前提是:我们只会点击那些我们熟悉的、赞同的内容,不断让机器加深对我们的印象:原来他们只喜欢看这些!
但在现实中,这个前提是过于简化的,乃至是错误的。
在个体层面,我们有着多样的阅读动机,受到各种认知偏见的影响,可能倾向于点击某些特定类型的内容,但绝不仅仅局限于自己认同的那些。
在社交层面:我们在大多数APP上都存在着社交关系,以及主动选择关注的帐号,这些都对我们能接触到的内容产生重要影响。一个在APP上拥有一定社交关系的人,不太可能陷入狭窄的视野当中。
在技术层面:在算法的分类里说了,每种算法都有其利弊,因此很多公司都是采用“算法矩阵”的方式来推荐feed。但在普罗大众眼里,算法=基于内容的推荐算法,而忽略了“基于内容的推荐算法”只是算法种类里的一种,其他类型算法也会被产品使用。
在企业层面:没有一个商场的经理,希望顾客每一次来到商场都只关注同一类别的商品。用户兴趣窄化对于商业化目标并不是一个好的选择。
博弈:
推荐太强了,关注力量就会弱。抖音沉浸式交互和基于内容的算法推荐是 kill time 的利器,推荐feed刷的过瘾了,你还会去刷关注feed吗?
共生:
算法有弊端,关注可以弥补或有所增益。推荐feed是忽略了人"社交性“这个特点,以知乎为例,关注的内容生产者传递给我们价值,所以我们需要一个途径来知道那几十个或上百的关注对象的产出内容。朋友圈满足我们窥探的信息需求,也同理。(另外从结果反推过程,大家看一下手里的B站、知乎、抖音、快手就清楚了)
③ 推荐算法中有哪些常用排序算法
外排序、内排序、插入类排序、直接插入排序、希尔排序、选择类排序。
推荐算法是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西,应用推荐算法比较好的地方主要是网络。所谓推荐算法就是利用用户的一些行为,通过一些数学算法,推测出用户可能喜欢的东西。
在基于内容的推荐系统中,项目或对象是通过相关特征的属性来定义的,系统基于用户评价对象的特征、学习用户的兴趣,考察用户资料与待预测项目的匹配程度。用户的资料模型取决于所用的学习方法,常用的有决策树、神经网络和基于向量的表示方法等。基于内容的用户资料需要有用户的历史数据,用户资料模型可能随着用户的偏好改变而发生变化。
基于内容的推荐与基于人口统计学的推荐有类似的地方,只不过系统评估的中心转到了物品本身,使用物品本身的相似度而不是用户的相似度来进行推荐。
④ 推荐算法有哪些
推荐算法大致可以分为三类:基于内容的推荐算法、协同过滤推荐算法和基于知识的推荐算法。 基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。 协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD,Matrix Factorization等,这种方法训练过程比较长,但是训练完成后,推荐过程比较快。 最后一种方法是基于知识的推荐算法,也有人将这种方法归为基于内容的推荐,这种方法比较典型的是构建领域本体,或者是建立一定的规则,进行推荐。 混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式尽心融合。 当然,推荐系统还包括很多方法,其实机器学习或者数据挖掘里面的方法,很多都可以应用在推荐系统中,比如说LR、GBDT、RF(这三种方法在一些电商推荐里面经常用到),社交网络里面的图结构等,都可以说是推荐方法。
⑤ 07_推荐系统算法详解
基于人口统计学的推荐与用户画像、基于内容的推荐、基于协同过滤的推荐。
1、基于人口统计学的推荐机制( Demographic-based Recommendation)是一种最易于实现的推荐方法,它只是简单的根据系统用户的基本信息发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前用户。
2、对于没有明确含义的用户信息(比如登录时间、地域等上下文信息),可以通过聚类等手段,给用户打上分类标签。
3、对于特定标签的用户,又可以根据预设的规则(知识)或者模型,推荐出对应的物品。
4、用户信息标签化的过程一般又称为 用户画像 ( User Profiling)。
(1)用户画像( User Profile)就是企业通过收集与分析消费者社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌作是企业应用大数据技术的基本方式。
(2)用户画像为企业提供了足够的信息基础,能够帮助企业快速找到精准用户群体以及用户需求等更为广泛的反馈信息。
(3)作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础。
1、 Content- based Recommendations(CB)根据推荐物品或内容的元数据,发现物品的相关性,再基于用户过去的喜好记录,为用户推荐相似的物品。
2、通过抽取物品内在或者外在的特征值,实现相似度计算。比如一个电影,有导演、演员、用户标签UGC、用户评论、时长、风格等等,都可以算是特征。
3、将用户(user)个人信息的特征(基于喜好记录或是预设兴趣标签),和物品(item)的特征相匹配,就能得到用户对物品感兴趣的程度。在一些电影、音乐、图书的社交网站有很成功的应用,有些网站还请专业的人员对物品进行基因编码/打标签(PGC)。
4、 相似度计算:
5、对于物品的特征提取——打标签(tag)
- 专家标签(PGC)
- 用户自定义标签(UGC)
- 降维分析数据,提取隐语义标签(LFM)
对于文本信息的特征提取——关键词
- 分词、语义处理和情感分析(NLP)
- 潜在语义分析(LSA)
6、 基于内容推荐系统的高层次结构
7、 特征工程
(1)特征( feature):数据中抽取出来的对结果预测有用的信息。
特征的个数就是数据的观测维度。
特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
特征工程一般包括特征清洗(采样、清洗异常样本),特征处理和特征选择。
特征按照不同的数据类型分类,有不同的特征处理方法:数值型、类别型、时间型、统计型。
(2)数值型特征处理
用连续数值表示当前维度特征,通常会对数值型特征进行数学上的处理,主要的做法是归一化和离散化。
* 幅度调整归一化:
特征与特征之间应该是平等的,区别应该体现在 特征内部 。
例如房屋价格和住房面积的幅度是不同的,房屋价格可能在3000000~15000000(万)之间,而住房面积在40-300(平方米)之间,那么明明是平等的两个特征,输入到相同的模型中后由于本身的幅值不同导致产生的效果不同,这是不合理的
* 数值型特征处理——离散化
离散化的两种方式:等步长——简单但不一定有效;等频——min -> 25% -> 75% -> max
两种方法对比:
等频的离散化方法很精准,但需要每次都对数据分布进行一遍从新计算,因为昨天用户在淘宝上买东西的价格分布和今天不一定相同,因此昨天做等频的切分点可能并不适用,而线上最需要避免的就是不固定,需要现场计算,所以昨天训练出的模型今天不一定能使用。
等频不固定,但很精准,等步长是固定的,非常简单,因此两者在工业上都有应用。
(3) 类别型特征处理
类别型数据本身没有大小关系,需要将它们编码为数字,但它们之间不能有预先设定的大小关系,因此既要做到公平,又要区分开它们,那么直接开辟多个空间。
One-Hot编码/哑变量:One-Hot编码/哑变量所做的就是将类别型数据平行地展开,也就是说,经过One-Hot编码哑变量后,这个特征的空间会膨胀。
(4) 时间型特征处理
时间型特征既可以做连续值,又可以看做离散值。
连续值:持续时间(网页浏览时长);间隔时间(上一次购买/点击离现在的时间间隔)。
离散值:一天中哪个时间段;一周中的星期几;一年中哪个月/星期;工作日/周末。
(5) 统计型特征处理
加减平均:商品价格高于平均价格多少,用户在某个品类下消费超过多少。
分位线:商品属于售出商品价格的分位线处。
次序性:商品处于热门商品第几位。
比例类:电商中商品的好/中/差评比例。
8、 推荐系统常见反馈数据 :
9、 基于UGC的推荐
用户用标签来描述对物品的看法,所以用户生成标签(UGC)是联系用户和物品的纽带,也是反应用户兴趣的重要数据源。
一个用户标签行为的数据集一般由一个三元组(用户,物品,标签)的集合表示,其中一条记录(u,i,b)表示用户u给物品打上了标签b。
一个最简单的算法:
- 统计每个用户最常用的标签
- 对于每个标签,统计被打过这个标签次数最多的物品
- 对于一个用户,首先找到他常用的标签,然后找到具有这些标签的最热门的物品,推荐给他
- 所以用户u对物品i的兴趣公式为 ,其中 使用户u打过标签b的次数, 是物品i被打过标签b的次数。
简单算法中直接将用户打出标签的次数和物品得到的标签次数相乘,可以简单地表现出用户对物品某个特征的兴趣。
这种方法倾向于给热门标签(谁都会给的标签,如“大片”、“搞笑”等)、热门物品(打标签人数最多)比较大的权重,如果一个热门物品同时对应着热门标签,那它就会“霸榜”,推荐的个性化、新颖度就会降低。
类似的问题,出现在新闻内容的关键字提取中。比如以下新闻中,哪个关键字应该获得更高的权重?
10、 TF-IDF:词频逆文档频率 ( Term Frequency- -Inverse Document Frequency,TF-DF)是一种用于资讯检索与文本挖掘的常用加权技术。
TFDF是一种统计方法,用以评估一个字词对于一个文件集或一个语料库中的其中份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
TFIDF=TF IDF
TF-IDF的主要思想是 :如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。
TF-DF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。
词频( Term Frequency,TF) :指的是某一个给定的词语在该文件中出现的频率。这个数字是对词数的归一化,以防止偏向更长的文件。(同一个词语在长文件里可能会比短文件有更高的词数,而不管该词语重要与否。) ,其中 表示词语 i 在文档 j 中出现的频率, 表示 i 在 j 中出现的次数, 表示文档 j 的总词数。
逆向文件频率( Inverse Document Frequency,IDF) :是一个词语普遍重要性的度量,某一特定词语的IDF,可以由总文档数目除以包含该词语之文档的数目,再将得到的商取对数得到 ,其中 表示词语 i 在文档集中的逆文档频率,N表示文档集中的文档总数, 表示文档集中包含了词语 i 的文档数。
(11) TF-IDF对基于UGC推荐的改进 : ,为了避免热门标签和热门物品获得更多的权重,我们需要对“热门进行惩罚。
借鉴TF-IDF的思想,以一个物品的所有标签作为“文档”,标签作为“词语”,从而计算标签的“词频”(在物品所有标签中的频率)和“逆文档频率”(在其它物品标签中普遍出现的频率)。
由于“物品i的所有标签” 应该对标签权重没有影响,而 “所有标签总数” N 对于所有标签是一定的,所以这两项可以略去。在简单算法的基础上,直接加入对热门标签和热门物品的惩罚项: ,其中, 记录了标签 b 被多少个不同的用户使用过, 记录了物品 i 被多少个不同的用户打过标签。
(一)协同过滤(Collaborative Filtering, CF)
1、基于协同过滤(CF)的推荐:基于内容( Content based,CB)主要利用的是用户评价过的物品的内容特征,而CF方法还可以利用其他用户评分过的物品内容。
CF可以解决CB的一些局限:
- 物品内容不完全或者难以获得时,依然可以通过其他用户的反馈给出推荐。
- CF基于用户之间对物品的评价质量,避免了CB仅依赖内容可能造成的对物品质量判断的干。
- CF推荐不受内容限制,只要其他类似用户给出了对不同物品的兴趣,CF就可以给用户推荐出内容差异很大的物品(但有某种内在联系)
分为两类:基于近邻和基于模型。
2、基于近邻的推荐系统:根据的是相同“口碑”准则。是否应该给Cary推荐《泰坦尼克号》?
(二)基于近邻的协同过滤
1、 基于用户(User-CF): 基于用户的协同过滤推荐的基本原理是,根据所有用户对物品的偏好,发现与当前用户口味和偏好相似的“邻居”用户群,并推荐近邻所偏好的物品。
在一般的应用中是采用计算“K-近邻”的算法;基于这K个邻居的历史偏好信息,为当前用户进行推荐。
User-CF和基于人口统计学的推荐机制:
- 两者都是计算用户的相似度,并基于相似的“邻居”用户群计算推荐。
- 它们所不同的是如何计算用户的相似度:基于人口统计学的机制只考虑用户本身的特征,而基于用户的协同过滤机制可是在用户的历史偏好的数据上计算用户的相似度,它的基本假设是,喜欢类似物品的用户可能有相同或者相似的口味和偏好。
2、基于物品(Item-CF):基于项目的协同过滤推荐的基本原理与基于用户的类似,只是使用所有用户对物品的偏好,发现物品和物品之间的相似度,然后根据用户的历史偏好信息,将类似的物品推荐给用户。
Item-CF和基于内容(CB)的推荐
- 其实都是基于物品相似度预测推荐,只是相似度计算的方法不一样,前者是从用户历史的偏好推断,而后者是基于物品本身的属性特征信息。
同样是协同过滤,在基于用户和基于项目两个策略中应该如何选择呢?
- 电商、电影、音乐网站,用户数量远大于物品数量。
- 新闻网站,物品(新闻文本)数量可能大于用户数量。
3、 User-CF和Item-CF的比较
同样是协同过滤,在User-CF和ltem-CF两个策略中应该如何选择呢?
Item-CF应用场景
- 基于物品的协同过滤( Item-CF ) 推荐机制是 Amazon在基于用户的机制上改良的一种策略因为在大部分的Web站点中,物品的个数是远远小于用户的数量的,而且物品的个数和相似度相对比较稳定,同时基于物品的机制比基于用户的实时性更好一些,所以 Item-CF 成为了目前推荐策略的主流。
User-CF应用场景
- 设想一下在一些新闻推荐系统中,也许物品一一也就是新闻的个数可能大于用户的个数,而且新闻的更新程度也有很快,所以它的相似度依然不稳定,这时用 User-cf可能效果更好。
所以,推荐策略的选择其实和具体的应用场景有很大的关系。
4、 基于协同过滤的推荐优缺点
(1)基于协同过滤的推荐机制的优点:
它不需要对物品或者用户进行严格的建模,而且不要求对物品特征的描述是机器可理解的,所以这种方法也是领域无关的。
这种方法计算出来的推荐是开放的,可以共用他人的经验,很好的支持用户发现潜在的兴趣偏好。
(2)存在的问题
方法的核心是基于历史数据,所以对新物品和新用户都有“冷启动”的问题。
推荐的效果依赖于用户历史好数据的多少和准确性。
在大部分的实现中,用户历史偏好是用稀疏矩阵进行存储的,而稀疏矩阵上的计算有些明显的问题,包括可能少部分人的错误偏好会对推荐的准确度有很大的影响等等。
对于一些特殊品味的用户不能给予很好的推荐。
(三)基于模型的协同过滤
1、基本思想
(1)用户具有一定的特征,决定着他的偏好选择
(2)物品具有一定的特征,影响着用户需是否选择它。
(3)用户之所以选择某一个商品,是因为用户特征与物品特征相互匹配。
基于这种思想,模型的建立相当于从行为数据中提取特征,给用户和物品同时打上“标签”;这和基于人口统计学的用户标签、基于内容方法的物品标签本质是一样的,都是特征的提取和匹配。
有显性特征时(比如用户标签、物品分类标签)我们可以直接匹配做出推荐;没有时,可以根据已有的偏好数据,去发据出隐藏的特征,这需要用到隐语义模型(LFM)。
2、基于模型的协同过滤推荐,就是基于样本的用户偏好信息,训练一个推荐模型,然后根据实时的用户喜好的信息进行预测新物品的得分,计算推荐
基于近邻的推荐和基于模型的推荐
- 基于近邻的推荐是在预测时直接使用已有的用户偏好数据,通过近邻数据来预测对新物品的偏好(类似分类)
- 而基于模型的方法,是要使用这些偏好数据来训练模型,找到内在规律,再用模型来做预测(类似回归)
训练模型时,可以基于标签内容来提取物品特征,也可以让模型去发据物品的潜在特征;这样的模型被称为 隐语义模型 ( Latent Factor Model,LFM)。
(1)隐语义模型(LFM):用隐语义模型来进行协同过滤的目标:
- 揭示隐藏的特征,这些特征能够解释为什么给出对应的预测评分
- 这类特征可能是无法直接用语言解释描述的,事实上我们并不需要知道,类似“玄学”
通过矩阵分解进行降维分析
- 协同过滤算法非常依赖历史数据,而一般的推荐系统中,偏好数据又往往是稀疏的;这就需要对原始数据做降维处理。
- 分解之后的矩阵,就代表了用户和物品的隐藏特征
隐语义模型的实例:基于概率的隐语义分析(pLSA)、隐式迪利克雷分布模型(LDA)、矩阵因子分解模型(基于奇异值分解的模型,SVD)
(2)LFM降维方法——矩阵因子分解
(3)LFM的进一步理解
我们可以认为,用户之所以给电影打出这样的分数,是有内在原因的,我们可以挖掘出影响用户打分的隐藏因素,进而根据未评分电影与这些隐藏因素的关联度,决定此未评分电影的预测评分。
应该有一些隐藏的因素,影响用户的打分,比如电影:演员、题材、年代…甚至不定是人直接可以理解的隐藏因子。
找到隐藏因子,可以对user和Iiem进行关联(找到是由于什么使得user喜欢/不喜欢此Item,什么会决定user喜欢/不喜欢此item),就可以推测用户是否会喜欢某一部未看过的电影。
(4)矩阵因子分解
(5)模型的求解——损失函数
(6)模型的求解算法——ALS
现在,矩阵因子分解的问题已经转化成了一个标准的优化问题,需要求解P、Q,使目标损失函数取最小值。
最小化过程的求解,一般采用随机梯度下降算法或者交替最小二乘法来实现交替最小二乘法( Alternating Least Squares,ALS)
ALS的思想是,由于两个矩阵P和Q都未知,且通过矩阵乘法耦合在一起,为了使它们解耦,可以先固定Q,把P当作变量,通过损失函数最小化求出P,这就是一个经典的最小二乘问题;再反过来固定求得的P,把Q当作变量,求解出Q:如此交替执行,直到误差满足阅值条件,或者到达迭代上限。
(7)梯度下降算法