星上交换算法
❶ 数据链路层(二)
广播信道可以进行一对多的通信,因此使用广播信道的局域网被称为共享式局域网。现在具有更高性能的使用点对点链路和链路交换机的交换式局迅培域网在有线领域已完全取代了共享式局域网。但无线局域网仍然使用的是共享亩唤唯媒体技术。
使用广播信道连接多个站点,必须解决如果同时有两个以上的站点在发送数据时共享信道上的信号冲突的问题。因此共享信道要着重考虑的一个问题就是如何协调多个发送和接收站点对一个共享传输媒体的占用,即媒体访问/接入控制(MAC) Medium Access Control 或 多点接入、多址访问 Multiple Access,媒体接入控制技术主要分为以下两大类:
局域网最主要的特点是: 网络为一个单位所拥有,且地理范围和站点数目均有限。
局域网具有如下的一些主要优点:
1、具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。
2、便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。
3、提高了系统的可靠性、可用性和残存性。
现在以太网已经在局域网市场上占据了绝对优势,双绞线是局域网中的主流传输媒体,数据率很高时则使用光纤。
为了使数据链路层能更好地适应多种局域网标准,802 委员会就将局域网的数据链路层拆成两个子层:
1、逻辑链路控制 LLC (Logical Link Control)子层
2、媒体接入控制 MAC (Medium Access Control)子层。
与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关,不管采用何种协议的局域网对 LLC 子层来说都是透明的
由于 TCP/IP 体系经常使用的局域网是 DIX Ethernet V2 而不是 802.3 标准中的几种局域网,因此现在 802 委员会制定的逻辑链路控制子层 LLC(即 802.2 标准)的作用已经不大了。
很多厂商生产的适配器上就仅装有 MAC 协议而没有 LLC 协议。
网络接口板又称为通信适配器(adapter)或网络接口卡 NIC (Network Interface Card),或“网卡”。
适配器的重要功能:
1、进行串行/并行转换。
2、对数据进行缓存。
3、在计算机的操作系统安装设备驱动程序。
4、实现以太网协议。
以太网采用的协调方式即使用一种特殊协议CSMA/CD,即 载波监听多点接入/碰撞检测 ,全称为Carrier Sense Multiple Access with Collision Detection。
重要特性:使用 CSMA/CD 协议的以太网不能进行全双工通信而只能进行 双向交替通信(半双工通信) 。
每个站在发送数据之后的一小段时间内,存在着遭遇碰撞的可能性。
这种发送的不确定性使整个以太网的平链握均通信量远小于以太网的最高数据率。
最先发送数据帧的站,在发送数据帧后至多经过时间 2τ(两倍的端到端往返时延)就可知道发送的数据帧是否遭受了碰撞。
以太网的端到端往返时延 2τ 称为 争用期 ,或碰撞窗口。
经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发生碰撞。
最短有效帧长 : 如果发生冲突,就一定是在发送的前 64 字节之内
由于一检测到冲突就立即中止发送,这时已经发送出去的数据一定小于 64 字节。
以太网规定了最短有效帧长为 64 字节,凡长度小于 64 字节的帧都是由于冲突而异常中止的无效帧。
因此, 如果发送的帧太短,有可能检测不到发生的碰撞
强化碰撞:当发送数据的站一旦发现发生了碰撞时,立即停止发送数据;
再继续发送若干比特的人为干扰信号(jamming signal),以便让所有用户都知道现在已经发生了碰撞。
传统以太网采用星形拓扑,在星形的中心则增加了一种可靠性非常高的设备,叫做集线器(hub) ,每个站需要用两对无屏蔽双绞线,分别用于发送和接收。
1990年,IEEE制定出星形以太网10BASE-T 的标准802.3i。10BASE-T 的通信距离稍短,每个站到集线器的距离不超过 100 m。
10BASE-T 双绞线以太网的出现,是局域网发展史上的一个非常重要的里程碑,它为以太网在局域网中的统治地位奠定了牢固的基础。 它的一些特点如下:
在使用点对点信道的数据链路中不需要使用地址,而当多个站点连接在同一个广播信道上想要实现两个站点的通信则每个站点就要有唯一的标识,即一个 数据链路层地址 ,在每个发送的帧中必须携带标识接受站点和发送站点的地址,由于该地址用于媒体接入控制,因此称为MAC地址,在局域网中,称为硬件地址或物理地址。
IEEE 的注册管理机构 RA 负责向厂家分配地址字段的前三个字节(即高位 24 位)。
地址字段中的后三个字节(即低位 24 位)由厂家自行指派,称为扩展标识符,必须保证生产出的适配器没有重复地址。
一个地址块可以生成2^24个不同的地址。这种 48 位地址称为 MAC-48,它的通用名称是EUI-48。“MAC地址”实际上就是适配器地址或适配器标识符EUI-48。
适配器从网络上每收到一个 MAC 帧就首先用硬件检查 MAC 帧中的 MAC 地址.如果是发往本站的帧则收下,然后再进行其他的处理。否则就将此帧丢弃,不再进行其他的处理。
“发往本站的帧”包括以下三种帧:
1、单播(unicast)帧(一对一)
2、广播(broadcast)帧(一对全体)
3、多播(multicast)帧(一对多)
常用的以太网MAC帧格式有两种标准 :
1、DIX Ethernet V2 标准 (最常用,下文介绍这种帧)
2、IEEE 的 802.3 标准
无效的 MAC 帧 :
1、帧的长度不是整数个字节;
2、用收到的帧检验序列 FCS 查出有差错;
3、数据字段的长度不在 46 ~ 1500 字节之间。
4、有效的 MAC 帧长度为 64 ~ 1518 字节之间。
5、对于检查出的无效 MAC 帧就简单地丢弃。以太网不负责重传丢弃的帧。
在数据链路层扩展局域网是使用 网桥 。
网桥工作在数据链路层,它根据 MAC 帧的目的地址对收到的帧进行转发。
网桥具有 过滤帧 的功能。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧的目的 MAC 地址,然后再确定将该帧转发到哪一个接口
目前使用得最多的网桥是 透明网桥(transparent bridge) 。
“透明”是指局域网上的站点并不知道所发送的帧将经过哪几个网桥,因为网桥对各站来说是看不见的。 透明网桥是一种即插即用设备,其标准是 IEEE 802.1D
透明网桥使用了 生成树算法 :这是为了避免产生转发的帧在网络中不断地兜圈子
1、源路由(source route)网桥在发送帧时将详细的路由信息放在帧的首部中。
2、源站以广播方式向欲通信的目的站发送一个发现帧,每个发现帧都记录所经过的路由。
3、发现帧到达目的站时就沿各自的路由返回源站。源站在得知这些路由后,从所有可能的路由中选择出一个最佳路由。凡从该源站向该目的站发送的帧的首部,都必须携带源站所确定的这一路由信息。
1990 年问世的交换式集线器(switching hub),可明显地提高局域网的性能。交换式集线器常称为以太网交换机(switch)或第二层交换机(表明此交换机工作在数据链路层)。以太网交换机通常都有十几个接口。因此,以太网交换机实质上就是一个多接口的网桥,可见交换机工作在 数据链路层 。
虚拟局域网 VLAN 是由一些局域网网段构成的与物理位置无关的逻辑组。这些网段具有某些共同的需求。
每一个 VLAN 的帧都有一个明确的标识符,指明发送这个帧的工作站是属于哪一个 VLAN。虚拟局域网其实只是局域网给用户提供的一种服务,而并不是一种新型局域网。
1、当 B1 向 VLAN2 工作组内成员发送数据时,工作站 B2 和 B3 将会收到广播的信息。
2、B1 发送数据时,工作站 A1, A2 和 C1都不会收到 B1 发出的广播信息。
3、虚拟局域网限制了接收广播信息的工作站数,使得网络不会因传播过多的广播信息(即“广播风暴”)而引起性能恶化。
虚拟局域网协议允许在以太网的帧格式中插入一个 4 字节的标识符,称为 VLAN 标记(tag),用来指明发送该帧的工作站属于哪一个虚拟局域网。
速率达到或超过 100 Mb/s 的以太网称为高速以太网。
在双绞线上传送 100 Mb/s 基带信号的星型拓扑以太网,仍使用 IEEE 802.3 的CSMA/CD 协议。100BASE-T 以太网又称为快速以太网(Fast Ethernet)。
1、可在全双工方式下工作而无冲突发生。因此,不使用 CSMA/CD 协议。
2、MAC 帧格式仍然是 802.3 标准规定的。
3、保持最短帧长不变,但将一个网段的最大电缆长度减小到 100 m。
4、帧间时间间隔从原来的 9.6 μs 改为现在的 0.96 μs。
允许在 1 Gb/s 下全双工和半双工两种方式工作。使用 802.3 协议规定的帧格式。
在半双工方式下使用 CSMA/CD 协议(全双工方式不需要使用 CSMA/CD 协议)。
与 10BASE-T 和 100BASE-T 技术向后兼容。
全双工方式:当吉比特以太网工作在全双工方式时(即通信双方可同时进行发送和接收数据),不使用载波延伸和分组突发。
10 吉比特以太网与 10 Mb/s,100 Mb/s 和 1 Gb/s 以太网的帧格式完全相同。
10 吉比特以太网还保留了 802.3 标准规定的以太网最小和最大帧长,便于升级。
10 吉比特以太网不再使用铜线而只使用光纤作为传输媒体。
10 吉比特以太网只工作在全双工方式,因此没有争用问题,也不使用 CSMA/CD 协议
局域网物理层 LAN PHY。局域网物理层的数据率是 10.000 Gb/s。
可选的广域网物理层 WAN PHY。广域网物理层具有另一种数据率,这是为了和所谓的“Gb/s”的 SONET/SDH(即OC-192/STM-64)相连接。
(为了使 10 吉比特以太网的帧能够插入到 OC-192/STM-64 帧的有效载荷中,就要使用可选的广域网物理层,其数据率为 9.95328 Gb/s。)
以太网已成功地把速率提高到 1 ~ 10 Gb/s ,所覆盖的地理范围也扩展到了城域网和广域网,因此现在人们正在尝试使用以太网进行宽带接入。
以太网接入的重要特点是它可提供双向的宽带通信,并且可根据用户对带宽的需求灵活地进行带宽升级。
采用以太网接入可实现端到端的以太网传输,中间不需要再进行帧格式的转换。这就提高了数据的传输效率和降低了传输的成本。
❷ 通信网常用的拓扑结构有哪些
通信网常用的拓扑结构有星型、总线型、树型、环型和网状。
1、星型拓扑结构
在星型拓扑结构中,网络中的各节点通过点到点的方式连接到一个中央节点(又称中央转接站,一般是集线器或交换机)上,由该中央节点向目的节点传送信息。
中央节点执行集中式通信控制策略,因此中央节点相当复杂,负担比各节点重得多。在星型网中任何两个节点要进行通信都必须经过中央节点控制。
星型拓扑结构相对简单,便于管理,建网容易,局域网普遍采用的一种拓扑结构。采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。
2、总线型拓扑结构
将所有的节点都连接到一条电缆上,把这条电缆成为总线。总线型网络是最为普及的网络拓扑结构之一。它的连接形式简单、易于安装、成本低,增加和撤销网络设备都比较灵活。
但由于总线型的拓扑结构中,任意的节点发生故障,都会导致网络的阻塞。同时,这种拓扑结构还难以查找故障。
总线型拓扑结构适用于计算机数目相对较少的局域网络,通常这种局域网络、的传输速率在100Mbps,网络连接选用同轴电缆。总线型拓扑结构曾流行了一段时间,典型的总线型局域网有以太网。
3、树型拓扑结构
树型拓扑,一种类似于总线拓扑的局域网拓扑。树型网络可以包含分支,每个分支又可包含多个结点。
树型拓扑具有较强的可折叠性,非常适用于构建网络主干,还能够有效地保护布线投资。这种拓扑结构的网络一般采用光纤作为网络主干,用于军事单位、政府单位等上下界限相当严格和层次分明的网络结构。
4、环型拓扑结构
环型拓扑是使用公共电缆组成一个封闭的环,各节点直接连到环上,信息沿着环按一定方向从一个节点传送到另一个节点。环接口一般由发送器、接收器、控制器、线控制器和线接收器组成。
在环型拓扑结构中,有一个控制发送数据权力的"令牌",它在后边按一定的方向单向环绕传送,每经过一个节点都要被接收,判断一次,是发给该节点的则接收,否则的话就将数据送回到环中继续往下传。
5、网状拓扑结构
网状拓扑结构,这种拓扑结构主要指各节点通过传输线互联连接起来,并且每一个节点至少与其他两个节点相连,网状拓扑结构具有较高的可靠性,但其结构复杂,实现起来费用较高,不易管理和维护,不常用于局域网。
在一个大的区域内,用无线电通信链路连接一个大型网络时,网状网是最好的拓扑结构。通过路由器与路由器相连,可让网络选择一条最快的路径传送数据。
❸ 计算机网络选择题 高手帮我
1 CSMA(载波监听多路访问)控制策略中有三种坚持退避算法,其中一种是:“一旦介质空闲就发送数据,假如介质是忙的,继续监听,直到介质空闲后立即发送数据;如果有冲突就退避,然后再尝试”这种退避算法称为 (1) 算法。这种算法的主要特点是 (2) 。CSMA/CD在CSMA的基础上增加了冲突检测功能。网络中的某个发送站点一旦检测到冲突,它就立即停止发送,并发冲突码,其他站点都会 (3) 。如果站点发……
1 CSMA(载波监听多路访问)控制策略中有三种坚持退避算法,其中一种是:“一旦介质空闲就发送数据,假如介质是忙的,继续监听,直到介质空闲后立即发送数据;如果有冲突就退避,然后再尝试”这种退避算法称为 (1) 算法。这种算法的主要特点是 (2) 。CSMA/CD在CSMA的基础上增加了冲突检测功能。网络中的某个发送站点一旦检测到冲突,它就立即停止发送,并发冲突码,其他站点都会 (3) 。如果站点发送时间为1,任意两个站之间的传播延迟为t,若能正常检测到冲突,对于基带总线网络,t的值应为 (4) ;对于宽带总线网络,t的值应为 (5) 。 (2001年试题)
(1)A.1-坚持CSMA B.非坚持CSMA C.P-坚持CSMA D.O-坚持CSMA
(2)A.介质利用率低,但可以有效避免冲突
B.介质利用率高,但无法避免冲突
C.介质利用率低,且无法避免冲突
D.介质利用率高,且可以有效避免冲突
(3)A.处于待发送状态 B.相继竞争发送权 C.接收到阻塞信号 D.有可能继续发送数据
(4)A.t≤0.5 B.t>0.5 C.t≥1 D.0.5(5)A.t>0.25 B.t≥0.5 C.t≤0.25 D.0.25解析
本题考查的是CSMA/CD协议的相关知识点。
载波监听(Carrier Sense)的思想是:站点在发送帧访问传输信道之前,首先监听信道有无载波,若有载波,说明已有用户在使用信道,则不发送帧以避免冲突。多路访问(Multiple Access)是指多个用户共用一条线路。
CSMA技术中要解决的一个问题是当侦听信道已经被占用时,如何确定再次发送的时间,通常有以下几种方法:
坚持型CSMA(1—persistent CSMA):其原理是若站点有数据发送,先监听信道,若站点发现信道空闲,则发送;若信道忙,则继续监听直至发现信道空闲,然后完成发送;若产生冲突,等待一随机时间,然后重新开始发送过程。其优点是减少了信道空闲时间;缺点是增加了发生冲突的概率;广播延迟对协议性能的影响:广播延迟越大,发生冲突的可能性越大,协议性能越差。
非坚持型CSMA(nonpersistent CSMA):其原理是若站点有数据发送,先监听信道,若站点发现信道空闲,则发送;若信道忙,等待一随机时间,然后重新开始发送过程;若产生冲突,等待一随机时间,然后重新开始发送过程。它的优点是减少了冲突的概率;缺点是增加了信道空闲时间,数据发送延迟增大;信道效率比1-坚持CSMA高,传输延迟比1-坚持CSMA大。
p-坚持型CSMA(p-persistent CSMA):适用于分槽信道,它的原理是若站点有数据发送,先监听信道,若站点发现信道空闲,则以概率p发送数据,以概率q=l-p延迟至下一个时槽发送。若下一个时槽仍空闲,重复此过程,直至数据发出或时槽被其他站点所占用;若忙,则等待下一个时槽,重新开始发送;若产生冲突,等待一随机时间,然后重新开始发送。
CSMA/CD载波侦听多路存取/冲突检测的原理是站点使用CSMA协议进行数据发送,在发送期间如果检测到冲突,立即终止发送,并发出一个瞬间干扰信号,使所有的站点都知道发生了冲突,在发出干扰信号后,等待一段随机时间,再重复上述过程。
CSMA/CD的代价是用于检测冲突所花费的时间。对于基带总线而言,最坏情况下用于检测一个冲突的时间等于任意两个站之间传播时延的两倍。因此2t≤1,即t≤0.5。对于宽带总线而言,由于单向传输的原因,冲突检测时间等于任意两个站之间最大传播时延的4倍。因此4t≤1,即t≤0.25。
答案 (1)A (2)B (3)C (4)A (5)C
2 IEEE802.5令牌环(Token Ring)网中,时延是由 (1) 决定。要保证环网的正常运行,环的时延必须有一个最低限度,即 (2) 。如果达不到这个要求,可以采用的一种办法是通过增加电缆长度,人为地增加时延来解决。设有某—个令牌环网长度为400m,环上有28个站点,其数据传输率为4Mbit/s,环上信号的传播速度为200m/μs,每个站点具有1bit时延,则环上可能存在的最小和最大时延分别是 (3) bit和 (4) bit。当始终有一半站点打开工作时,要保证环网的正常运行,至少还要将电缆的长度增加 (5) 。(2002年试题)
(1)A.站点时廷和信号传话时廷 B.令牌帧长短和数据帧长短
C.电缆长度和站点个数 D.数据传输单和信号传播速度
(2)A.数据帧长 B.令牌帧长 C.信号传播时延 D.站点个数
(3)A.1 B.8 C.20 D.24
(4)A.9 B.28 C.36 D.48
(5)A.50 B.100 C.200 D.400
解析
本题考查令牌环网的相关知识,应该牢固掌握。
首先要了解令牌环网的工作原理。当节点A想要发送数据时的步骤如下:
①A节点要等待令牌的到来,并检测该令牌是否为空闲状态。若是空闲状态进行步骤2,否则继续等待;
②将得到的令牌改为忙碌(busy)状态;
③构成一个信息帧,即将数据(data)与忙碌的Token附在一起发送出去;
④当忙碌的token沿着环型网经过每一个节点时,每个节点首先会先检查数据单元中的目的地址。如果目的地址与本节点地址相符,则由本节点将数据接收下来,进行拷贝操作,并以应答报文的形式作出回答,然后再传送给下一个节点。当忙碌的Token与数据单元回到原来发送节点时,该节点将会除去数据单元,并将忙碌的Token改为空闲状态;
⑤接着检查目的节点送来的应答信息,如果为ACK(确认),则表示目的节点接收正确,至此,完成了一次数据传送。反之,需要等待再得到令牌时进行重发。
因此令牌环内需要保证三个字节令牌帧的流动,即时延不能低于24bit。
当网络取得最小时延即在每个站点都不停留,得400/200=2μs,2×10-6×4×106=8bit,即最小时延8bit。
网络取得最大时延时即在每个站点都停留,这时增加1×28bit,共36bit
当网络中始终有一半站点工作时,使用类似的方法可得这时的最大时延是8+14=22bit,而为了保证令牌不网正常工作,还需要添加2bit,即增加2/(4*106)=0.5μs,可知需要增加0.5×200=100m的电缆。
答案 (1)A (2)B (3)B (4)C (5)B
3 采用星型拓扑结构的局域网典型实例是( )。
CBX(计算机交换分机)
FDDI(光纤分布数据接口)
Ethernet(以太网)
Token Ring(令牌环)
解析
本题考查的是局域网的拓扑结构。
局域网采用的拓扑结构通常有星型、环型、总线型和树型4种。在题中给出的4类局域网中,CBX(计算机交换分机)以数字交换网络为整个网络的中心,各部件与数字交换网络相连,构成了星型结构。FDDI(光纤分布数据接口)的拓扑结构物理上是反向循环的双环,环上有各类工作的站和集中器,集中器可以与一些工作站相连,构成以集中器为中心的星型结构,即FDDI网络的拓扑结构为环型+星型。Ethernet(以太网)采用的拓扑结构为总线型,网上的服务器与工作站均与总线相连,通过总线传输数据,采用CSMA/CD介质访问控制方式。Token Ring(令牌环)采用环型拓扑结构,各结点依次互连,构成环型结构,所有数据及令牌均沿环依次传递,采用Token Ring协议。由以上分析可知,采用星型拓扑结构的局域网典型实例应为CBX。
答案 A
4 通常认为,决定局域网特性的主要技术有3个,它们是( ) 。
传输媒体、差错检测方法和网络操作系统
通信方式、同步方式和拓扑结构
传输媒体、拓扑结构和媒体访问控制方式
数据编码技术、媒体访问控制方法和数据交换技术
解析
本题考查的是局域网的基本知识。
局域网是一种地理范围有限的计算机网络,其典型特性如下:
(1)高数据速率(0.1~1000Mbit/s)
(2)短距离(0.1~25km)
(3)低误码率(10-8~10-11)
通常,决定局域网特性的主要技术有传输媒体、拓扑结构和媒体访问控制方式(MAC)。因此本题选C
答案 C
5 令牌总线网中,当所有站都有报文要发送时,最坏情况下等待获得令牌和发送报文的时间应等于( )。
所有站点传送令牌的时间总和
所有站点传送令牌和发送报文的时间的总和
所有站点传送令牌时间和的一半
所有站点传送令牌和发送报文时间的总和的一半
解析
本题考查的是令牌总线的工作原理。
IEEE 802.4标准描述令牌总线的媒体访问控制方法。令牌总线媒体访问控制是将物理总线上的站点构成一个逻辑环,每一个站都在一个有序的序列中被指定一个逻辑位置,而序列中最后一个成员又跟着第一个成员,每个站都知道在它之前和之后的站的标识。在物理结构上它是一个总线结构局域网,但是,在逻辑结构上,又成了一种环型结构的局域网。和令牌环一样,站点只有取得令牌,才能发送帧,而令牌在逻辑环上依次传递。在正常运行时,当站点做完该做的工作或者时间终了时,它将令牌传递给逻辑序列中的下一个站。从逻辑上看,令牌是按地址的递减顺序传送至下一个站点,但从物理上看,带有目的地址的令牌帧广播到总线上所有的站点,当目的站识别出符合它的地址,即把该令牌帧接收。总线上站的实际顺序与逻辑顺序并无关系。只有收到令牌帧的站点才能将信息帧送到总线上,取得令牌的站点有报文要发送则可发送,随后,将令牌传递给下一个站点。如果取得令牌的站点没有报文要发送,则立刻把令牌传递到下一站点。由于站点接收到令牌的过程是顺序依次进行的,因此对所有站点都有机会传递数据。令牌总线的每个站传输之前必须等待的时间总量总是确定的,这是因为对每个站发送帧的最大长度可以加以限制。此外,当所有站都有报文要发送,则最坏的情况下等待取得令牌和发送报文的时间应该等于全部令牌传送时间和报文发送时间的总和。另一方面,如果只有一个站点有报文要发送,则最坏情况下等待时间只是全部令牌传递时间之总和,实际等待时间在这一区间范围内。对于应用于控制过程的局域网,这个等待访问时间是一个很关键的参数,可以根据需求,选定网中的站点数及最大的报文长度,从而保证在限定的时间内,任一站点可以取得令牌权。由以上对令牌总线协议的叙述可知,B选项是正确答案。
答案 B
6 从介质访问控制方法的角度来对局域网进行分类,它们是( )。
A.快速以太网和慢速以太网 B.光纤局域网和铜线局域网
C.环型局域网和星型局域网 D.共享式局域网和交换式局域网
解析
本题考查的是对局域网进行分类的方法。
局域网从介质访问控制方法的角度可以分为两类:共享介质局域网与交换型局域网。总线型局域网通常采用的介质访问控制方法是共享介质方式。
A是根据传送速度来分;B是根据使用介质来分;C是拓扑结构来分。还可以根据操作系统来分等。
答案 D