当前位置:首页 » 操作系统 » 相噪算法

相噪算法

发布时间: 2024-08-20 12:57:05

㈠ DDS芯片AD9830主要有哪些应用电路

AD9830的原理及在中波激励器中的应用#
陈治鹏董天临
(华中科技大学电信系430074)
摘要
VCSMHir2IMMK
从DDS原理分析着手,着重介绍了AD9830R的特点、用途以及与其它频率合成器的比较。最后给出了AD9830在中波激励中的应用实例及使用中的注意事项。实验诬明,AD9830在中波领域可得到广泛应用。
X*►*><■«JMMT|KM«私
关键词中波激励器控制直接数字频率合成(DDS)


1概述
中波激励器是发射端的重要组成部分,它主要为发射机提供射频信号源,完成信息的处理。其具体实现方法是先形成发射部分所需的各种调制信号,再将信号频率从音频搬移到所需的发射频率,并初步提髙功率以驱动开关功率放大器。激励器关键部分包括频率合成、微机控制以及信号通道等部分。AD9830是ADI公司生产的直接数字频率合成器件。它具有换频速度快、频率分辨率高(频率步进间隔小)、相位噪声低、体积小、重量轻等特点,虽然它的输出频率范围不是很宽,对于中波300KHZ〜3MHz频段,用AD9830作为激励或接收部分的频率合成单元是非常合适的。
2直接数字频率合成原理分析
直接数字频合器包括系统时钟源、相位增量计算器、相位累加器、波形查找器、数模转换器(DAC)和低通滤波器等部分组成,其内部过程如图1所示。

图1DDS内部过程示意图在实际应用中,它的计算公式为f。=K*fc/2N=A少*fc/2N,其中:fo——为输出频率N——为相位累加器位数K——为不变量或相位增量值(AO)fc为系统时钟
从上式可看出,DDS实际是经过两次变
陈治鹏等:AD9830的原理及在中波激励器中的应用


换:位序列。这个过程一般由一个以f£作时钟的
(1)从不变量K以时钟ft产生量化的相N位相位累加器来实现,如图2所示。


相位量化序列
N


c


图2相位累加过程图


(2)从离散量化的相位序列产生对应的正弦信号的离散幅度序列。这个过程可由EPROM波形存储表的寻找来实现,如图3所示。
r-rr;一~正弦幅度量化序列相位ft化序列地址数据S(n>^
1EPROM^
图3相位转变为椹度过程图其中,不变量K就是相位增童,又称频率控制字,在CPU控制下,把量化的数字波形经D/A变换,最后通过低通滤波或带通滤波器平滑就可得到频率为f。=K^fc/2N=△<D^fc/2N的正弦信号。当K=1时,DDS输出最低频率,为fc/2N,也就是频率分辨率。所以,只要N足够大,fe尽量小,DDS就可以得到很少的频率间隔,AD9830的N为32。由此可见,要得到不同输出频率,只要在CPU的控制下改变K即可。
3各种频合器的比较分析
目前,按频合器的形式可分为:直接式、集成锁相环式和直接数字式(DDS)三种。直接式是将一个高稳定度和高准确度的标准频率经过加、减、乘、除四则运算,产生同样稳定度和精确度的多个频率。它的优点是换频速度快,分辨率可做到很高,可做到微秒级的换频速度,而且相位噪声特性好,但组合干扰信号多,不容易抑制。另外,它还有一个致命弱点是:成本髙、电路结构复杂、体积大。锁相式频合器具有体积小、电路简洁、杂波抑制高的特点,还具有窄带跟踪滤波能力,因而频谱可做得很好,但由于环路附加噪声的影响,在环路带宽内相位噪声特性很差,在环路带宽外则取决于VCO的相噪特性。如果要改善相位噪声,就必须压窄环路带宽,因而它的换频速度不可能做得很快。近几年,随着超大规模集成电路、髙速数字信号处理和高精度高速数模转换器(DAC)技术的发展,直接数字频率合成技术已愈加成熟,已广泛得到应用。DDS是通过在更高频率上累加相位来产生所需的正弦或余弦信号。它与系统时钟(标频)具有同样的频率稳定度和精确度。因而,它具有换频速度快,频率分辨率高,体积小和重量轻等优点。其不足之处在于:
(1)输出频率范围窄。
(2)工作频段低时,虚假分量大,且频率越髙,杂散分量越大。但对于中波来说,频段在300KH〜3MHz,频带为2.7MHz,不宽,频率也不髙。所以,采用DDS技术完全可行。至于如何提髙它的频谱纯度,可从如下几个方面做文章:
①改善时钟源的相位噪声(由标频决
定);
②提髙相位值的位数(由选用的DDS器件决定);
③提髙DAC的线性度和减少其杂散分
量;
④低通滤波器(LPF)的设计、电路板的布排上应避免耦合和分布参数。
4DDS部分具体设计图
AD9830最高时钟为50MHZ,根据奈奎斯特定律,理论上,AD9830的最高输出频率
为50X50%=25(MHz)。但实际上的最高输出频率为50X40%=20(MHz),正好适用于中波频段。用AD9830作为频合器的典型电路原理图见图4。



图4频合器的典型电路原理图

每位
FREO<».1>^
PHASERI.<KL2.3>-(»
数棋SFREG<0>»fou织*2,2
FREO<J>-foi«»|/re*252PHASERKO<V0>-l)l:LTAHASE<0,1«2,3>
选择数据淞设实丨.SELECTSETPSKUU^EU
6MCLKCYCLES的等待
DAC输出


图5AD9830内部程序流程图
滤波器采用7阶切比雪夫楠圆型低通滤波器,晶振采用标准的5M高精确度、髙稳定度、低相噪的温补晶振,达10—数量级。电路说明:5M的标频经过4倍频得到20M标准信号,作为DDS系统的时钟源,AD9830在中央CPU的控制下产生一个个的离散相位荇巩、鬼败热资为别杂故"h焦故纸鸩后荇巩。这些离散幅度序列经芯片内部DAC变换出模拟信号,最后经过一个5M的低通滤波器平滑处理,得到频段为300KHz〜3MHz、间隔为100Hz的频点信号。
AD9830将DAC集成在芯片内部,这样省去了外接数模转换器。可降低相位噪声,提高频谱纯度。AD9830相位累加器为32位,正弦波形查找相位截取为16位,数字化波形截取为12位,DAC数据为10位。所以,可计算出频率分辨率Af=20MHz/232免0.0046566,相位噪声下降为20X/g5/2=7.96dB,再经DDS处理,产生300K〜3MHz(称为fg)的信号,相位噪声改善为20X/g(fs/fg)=36.48dB〜16.48dB(£s为20M),综合两者,可算出输出信号的相位噪声比标频改善了8.52〜28.52dB。该DDS内部程序流程如图5所示。-激励器的主要技术性能如下:
频率范围:300KH2〜3MHz频率间隔:100Hz频率准确度:5X10~8/
频率稳定度:1X10_8/日
输出幅度:在50D负载上输出有效值
工作种类:一路下边带汉字或数据报边带响应:500〜900Hz内波动<0.5dB300〜3000Hz内波动<1.5dB载波抑制:>55dB三阶互调失真:<—45dB无用边带抑制:>60dB谐波分量:二次谐波波动<_50dB
三次以上谐波波动<—55dB杂散抑制:>60dB
根据以上性能和功能要求,我们设计的激励器可细划为如下几个部分:标频源、直接式数字频率合成器、控制系统、信号通道、信源处理以及供电系统等。具体系统原理如图6所示:


图6中,键盘的操作、频点的选择以及工作频率方式的显示等都由CPU统一管理,键盘采用轻触薄膜开关键盘,用柔性线路板将引线引到键盘和显示控制器上,显示采用数码或液晶显示。由于80C52片内有4K的内部存储器,故全部的控制及显示程序可集中放到CPU的内部,也可外接EPROM。如程序放在CPU的内部,操作更简洁、运行更安全、速度更快。缺点是硬件维修和软件更改不方便。在软件设计中,我们尽量避免死机和错误跳转,在DDS算法设计上,力求提高换频时间和计算精度。其主程序和中断子程序控制流程如图7所示。

图7(a)主程序流程图


(b)中断子程序流程图

6结论
综上所述,AD9830作为中波激励或接收的频合单元非常合适,即使在其它频段(如短波、甚低频、长波等),它也可以得到广泛应用。

㈡ 雷达脉冲信号怎样分析怎么确定是属于那种雷达信号

为准确测量脉冲串的特性,必须知道脉冲的频率。在许多情况,会有一个系统参考信号可用以把RTSA的参考与被测试设备参考锁定在一起。在这种情况,因测量工具和被测设备是锁定在一起的,所以手动输入频率错误为零。当并不准确把握脉冲频率时,RTSA利用三个用于频率误差估测的可选方法来确定RTSA的中心频率和脉冲频率之差。由用户选定的方法取决于频率和脉冲的相位特性。 雷达脉冲的频率和相位特性可被定义为具有恒固相位、变化相位或线性调频行为。在每种情况,每隔一段时间都对脉冲相位进行估算以确定来自测量相位的任何差异并借助该差异来估算脉冲串和仪器中心频率的频率变化或误差。可通过确定每个脉冲相对于参考信号相位的相位来估算固定相位脉动信号的频率(如脉冲调制的CW信号)。利用被测信号的同相/正交(I/Q)表述来构建内置在RTSA内的信号处理算法。相位是由I/Q波形计算的,其中: 相位(f)=arctan(Q/I) 然后用计算得来的每一脉冲相位计算相位差与时间的斜率,且还得到相对于分析仪频率的频率误差。为优化当确定脉冲相位时由滤波产生的超调和震铃效应,从每个脉冲50%处的中心进行I和Q采样。 对频率固定相位变化的信号(如开/关一个定频振荡器)来说,脉冲间没有简单关系。也就是说,虽然脉冲的频率一样,但每个脉冲的相位却不同。这样,就必须确定每个脉冲频率。通过确定每个脉冲对应于参考信号的相位斜率,有可能算出每个相位的频率误差。每个脉冲高电平中心处的50%用于该计算。然后对分析阶段得出的全部脉冲频率值进行平均以决定与测量频率的频率误差。 对包含重复线性调频变频的信号来说,在脉冲高电平持续时间,相位以抛物线方式变化。这种情况,可通过为每一抛物线相位计算找出一个合适的线切来估算频率误差。 对先进雷达系统来说,脉冲与脉冲间的相位测量一般是个重要指标。伴随着准确测试脉冲频率的需要,脉冲与脉冲间的相位测量精度取决于如下4个关键因素:相噪、整个测量时间、脉冲边沿定义和测量点以及信噪比(SNR)。被测信号自身及测量仪器的相噪都会影响测量精度。相噪带来的不确定性由总体测量时间决定。例如,1ms测量时间将导致集成的集成相噪限制以相对于载频约1kHz的偏置开始并扩展至测量带宽。 可通过把参考脉冲和被测脉冲间间隔最小化的方式来获得脉冲与脉冲间测量的更高稳定性。在准确脉冲测量中另一个重要因素是估算脉冲的上升沿到底在哪里开始,及为了使脉冲震铃消失它到底要持续多长时间。RF载频的脉冲与脉冲间的相位测量是由到脉冲上升沿的确定偏移完成的。定义得不好或测得不准确的上升沿可导致与参考频率不一致的偏移并恶化精度。当测量上升和下降沿时采用插值方法将有助于把该不确定性最小化。 确定相对于脉冲上升沿的测量点是有用的。为计算上升沿,脉冲-脉冲间任意点相位的测量精度都具体规定为应大于t = 10(测量带宽)、无论从上升还是下降沿来算都一样。例如,采用55 MHz测量滤波器的脉冲-脉冲间的相位测量在规范内,从脉冲的上升或下降沿来算,测量点大于10/(55 x 106),也即约为182 ns。 最后,在脉冲-脉冲测量中,SNR是个重要因素。高端RTSA的典型脉冲-脉冲间相位测量的不确定度在2GHz、20MHz带宽时是1.7deg.、比110MHz带宽下降了2.0deg.。在10GHz、20MHz带宽时精度是3.2deg.,在110MHz带宽时升至5deg.。

㈢ 相位和幅度的一致性对哪类雷达影响最大

事实上所有雷达都需要保证一定的幅相一致性,以使接收机工作在最佳状态。但幅相一致性对单脉冲雷达影响最大,单脉冲技术主要用于精密跟踪测量雷达中。单脉冲雷达采用振幅或相位和差式,接收机除了有和通道之外,还有若干个差通道及辅助通道,为了提高测量精度和实现伺服系统对目标的自动跟踪,要求差通道的信号幅度、相位与和通道的保持一致。一般可以在雷达每一个目标处理周期之前的一段时内,向和差通道分别输入测试或领示信号,以测量和差通道幅度、相位的误差,经自动控制系统形成幅度和相位的控制信号,控制调整和差通道的信号幅度、相位,使和差通道信号幅度、相位的误差变小,从而实现幅相一致性。可以参阅一下《雷达原理》和《精密测量跟踪雷达技术》

热点内容
脚本一般用在什么地方 发布:2024-11-25 11:13:28 浏览:823
php上传xls 发布:2024-11-25 11:01:46 浏览:678
formphp 发布:2024-11-25 11:01:45 浏览:553
数据库主表 发布:2024-11-25 10:54:13 浏览:228
什么是cf脚本 发布:2024-11-25 10:51:48 浏览:920
存储台设计 发布:2024-11-25 10:40:04 浏览:668
如何查看自己电脑的所有配置 发布:2024-11-25 10:14:02 浏览:771
java编译器伪编译指什么 发布:2024-11-25 10:08:53 浏览:961
amax服务器默认地址 发布:2024-11-25 10:07:20 浏览:318
甘肃省浪潮服务器云服务器 发布:2024-11-25 10:07:17 浏览:522