安卓数独游戏源码
‘壹’ 用c语言写一个简易数独的思路。要代码
#include<stdio.h>
intnum[9][9],xy[9][9];
intcheck(intx,inty){
inti,m,n;
for(i=0;i<9;i++)
if((xy[x][y]==xy[i][y]&&i!=x)||(xy[x][y]==xy[x][i]&&i!=y))
return0;
for(i=0,m=x/3*3,n=y/3*3;i<9;i++)
if(xy[x][y]==xy[m+i/3][n+i%3]&&m+i/3!=x&&n+i%3!=y)
return0;
return1;
}
voidsearch(intx,inty){
if(x==9)
for(x=0;x<9;x++){
for(y=0;y<9;y++)
printf("%d",xy[x][y]);
printf(" ");
}
elseif(num[x][y])
search(x+(y+1)/9,(y+1)%9);
else
for(xy[x][y]=1;xy[x][y]<=9;xy[x][y]++)
if(check(x,y))
search(x+(y+1)/9,(y+1)%9);
return;
}
intmain(){
inti,j;
for(i=0;i<9;i++)
for(j=0;j<9;j++){
scanf("%d",&num[i][j]);
xy[i][j]=num[i][j];
}
search(0,0);
return0;
}
输入为9行9列整数,已知的整数填写对应的数字,尚待计算的未知数字填写0。
该代码的思路很简单,就是从第一行第一列开始依次填入数字,检查是否是在同一行、同一列、同一宫有没有填入重复数字,如果没有就继续填入下一个数字,如果有就返回。
虽然效率稍低,但原理简单、表述直白、易于理解,更有效率的代码是使用十字链表完成,如有兴趣可继续深入
‘贰’ 谁有好的安卓开发教程推荐
android教程网络网盘免费资源在线学习
链接: https://pan..com/s/1vEeYVMBFhxsmmlxkEoHW1w
android教程
千锋教育Mars老师Android游戏开发教程-数独-源码下载(1)
千锋教育Mars老师Android游戏开发教程-数独-源码下载
千锋Android游戏开发视频教程-游戏数独-Mars力作(1)
千锋Android游戏开发视频教程-游戏数独-Mars力作
千锋Android应用开发培训视频教程-老罗在线课堂
千锋Android应用开发培训视频教程-老罗典藏版
千锋Android培训-Java视频教程-Mars典藏版
Android游戏开发基础视频教程-cocos2dMars版
千锋3G学院_Android游戏开发教程_数独_08.mp4
千锋3G学院_Android游戏开发教程_数独_07.mp4
千锋3G学院_Android游戏开发教程_数独_06.mp4
千锋3G学院_Android游戏开发教程_数独_05.mp4
千锋3G学院_Android游戏开发教程_数独_04.mp4
千锋3G学院_Android游戏开发教程_数独_03.mp4
‘叁’ 用C语言如何随机生成一个数独
数独生成算法?这个还真不好搞,不过我当初写数独游戏的时候随便捣鼓出来过一个,你自己去改改吧,至于这个算法能不能生成所有的数独,我还真没论证过。
原理:对一个给出的数独棋盘的所有行或列交换给出的两个数X、Y,或液数组仍满足数独规则。如给出1、2,则对所有列交换1、2的位置,数组仍满足数独规则。
由于对棋盘的演进是随机的,所以相当于随机生携正成数独棋盘啦。每衫隐物次演进的次数最好大一点,10次以上吧,以保证每个数都被换过位置。
具体代码就不用我写了吧,嘎嘎……
‘肆’ 数独 算法 C语言 代码
一、步骤:
1.对每一个空格,根据规则推断它可能填入的数字,并存储它的所有可能值;
2.根据可能值的个数,确定填写的顺序。比如说,有些空格只有一种可能,那必然是正确的结果,首先填入。
3.将所有只有一种可能的空格填写完毕以后,回到步骤1,重新确定剩下空格的可能值;
4.当没有只有一种可能的空格时(即每个空格都有两种以上可能),按照可能值个数从小到大的顺序,使用深度(广度)优先搜索,完成剩下空格。
二、例程:
#include<windows.h>
#include<stdio.h>
#include<time.h>
charsd[81];
boolisok=false;
//显示数独
voidshow()
{
if(isok)puts("求解完成");
elseputs("初始化完成");
for(inti=0;i<81;i++)
{
putchar(sd[i]+'0');
if((i+1)%9==0)putchar(' ');
}
putchar(' ');
}
//读取数独
boolInit()
{
FILE*fp=fopen("in.txt","rb");
if(fp==NULL)returnfalse;
fread(sd,81,1,fp);
fclose(fp);
for(inti=0;i<81;i++)
{
if(sd[i]>='1'&&sd[i]<='9')sd[i]-='0';
elsesd[i]=0;
}
show();
returntrue;
}
//递归解决数独
voidforce(intk)
{
if(isok)return;
if(!sd[k])
{
for(intm=1;m<=9;m++)
{
boolmm=true;
for(intn=0;n<9;n++)
{
if((m==sd[k/27*27+(k%9/3)*3+n+n/3*6])||(m==sd[9*n+k%9])||(m==sd[k/9*9+n]))
{
mm=false;
break;
}
}
if(mm)
{
sd[k]=m;
if(k==80)
{
isok=true;
show();
return;
}
force(k+1);
}
}
sd[k]=0;
}
else
{
if(k==80)
{
isok=true;
show();
return;
}
force(k+1);
}
}
intmain()
{
system("CLS");
if(Init())
{
doublestart=clock();
force(0);
printf("耗时%.0fms",clock()-start);
}
elseputs("初始化错误");
getchar();
}
‘伍’ 求数独源码
没试过
#include < stdio.h >
#include < stdlib.h >
int sudoku[81] ; // 数独题目阵列
int tempNum[81] ; // 上一次填数位置
int tempSp= 0 ; // 上一次填数位置指标
int startH[81] ; // 列位置的起点
int startV[81] ; // 行位置的起点
int startB[81] ; // 九宫格位置的起点
int addH[9] ; // 列位置的加值
int addV[9] ; // 行位置的加值
int addB[9] ; // 九宫格位置的加值
int main(int argc, char *argv[]) {
int j ;
if(argc>1) for(j=0; j<81; j++) sudoku[j]= argv[1][j]-'0' ;
else exit(0) ;
printf( "----------\n");
printSudoku(sudoku) ;
init() ; // 参数设定
tryAns() ; // 测试求解
printf( "----------\n");
printSudoku(sudoku) ;
printf( "----------\n");
}
int init() {
// 参数设定(设定这些参数之后,无论检查行、列、九宫格都方便多了)
int i ;
for(i=0; i<81; i++) {
startH[i]= i/9* 9 ; // 列位置的起点
startV[i]= i% 9 ; // 行位置的起点
startB[i]= ((i/9)/3)*27+ ((i%9)/3)*3 ; // 九宫格位置的起点
}
for(i=0; i<9; i++) {
addH[i]= i ; // 列位置的加值
addV[i]= i*9 ; // 行位置的加值
addB[i]= (i/3)*9+ (i%3) ; // 九宫格位置的加值
}
}
int printSudoku(int *prn) {
// 印出数独题目(阵列内容)
int i ;
for(i=0; i<81; i++) {
printf( "%2d", prn[i]);
if(i%9==8) printf("\n");
}
}
int tryAns() {
// 测试求解
int sp=getNextBlank(-1) ; // 取得第一个空白的位置开始填入数字
do {
sudoku[sp]++ ; // 将本位置数字加 1
if(sudoku[sp]>9) { // 如果本位置的数字已大于 9 时则回到上一个位置继续测试
sudoku[sp]= 0 ;
sp= pop() ;
} else {
if(check(sp)==0) { // 如果同行、列、九宫格都没有相同的数字,则到下一个空白处继续
push(sp) ; // 当然,如果发现有相同的数字时,就需把原位置的数字加 1(所以本处什么都不做)
sp= getNextBlank(sp) ;
}
}
} while(sp>=0 && sp<81) ;
}
int getNextBlank(int sp) {
// 取得下一个空白的位置
do {
sp++ ;
} while(sp<81 && sudoku[sp]>0) ;
return(sp) ;
}
int check(int sp) {
// 检查同行、列、九宫格有没有相同的数字,若有传回 1
int fg= 0 ;
if(!fg) fg= check1(sp, startH[sp], addH) ; // 检查同列有没有相同的数字
if(!fg) fg= check1(sp, startV[sp], addV) ; // 检查同行有没有相同的数字
if(!fg) fg= check1(sp, startB[sp], addB) ; // 检查同九宫格有没有相同的数字
return(fg) ;
}
int check1(int sp, int start, int *addnum) {
// 检查指定的行、列、九宫格有没有相同的数字,若有传回 1
int fg= 0, i, sp1 ;
for(i=0; i<9; i++) {
sp1= start+ addnum[i] ;
if(sp!=sp1 && sudoku[sp]==sudoku[sp1]) fg++ ;
}
return(fg) ;
}
int push(int sp) {
// 将指定的位置放入堆叠中
tempNum[tempSp++]= sp ;
}
int pop() {
// 取出堆叠中的上一个位置
if(tempSp<0) return(-1) ;
else return(tempNum[--tempSp]) ;
}
参考资料:http://bbs.bc-cn.net/viewthread.php?tid=189678&page=1 算法如下,先构造一个9*9的结构体数组,表示棋盘数据0表示空白未知,结构体中每个元素
包含一个1-9的数组作为备选数字.
构建好一个棋盘之后依次对每个空白位置进行备选数字中进行删除.当前已经填写的数字就全部删除
如果只剩下一个备选数字就将该备选数字填写到棋盘数据中.该算法在AI这个函数中实现.
当无法用AI算法推出结果的时候就进行回朔法,见找到有两个备选数字的元素,选取其中一个,
继续往下填写,直到全部填写上去(结束),或者无法继续填写(某个空白位置没有备选元素).
如果无法继续填写下去就表示最初选择的那个数据是错误的,直接填写另外一个数据到棋盘上.
该算法在AdvanceAI中体现出来
如此下去就能够填写出棋盘中的所有元素.
#include <cstdio>
#include <vector>
#include <algorithm>
enum{SIZE=81};
unsigned int Data[SIZE]={//未解棋盘数据
0 , 9 , 0 , 0 , 6 , 0 , 5 , 4 , 8 ,
4 , 0 , 3 , 0 , 8 , 0 , 9 , 0 , 0 ,
8 , 6 , 5 , 4 , 7 , 9 , 1 , 2 , 3 ,
0 , 5 , 6 , 3 , 9 , 0 , 4 , 0 , 1 ,
1 , 4 , 0 , 0 , 5 , 0 , 2 , 0 , 0 ,
0 , 0 , 0 , 0 , 4 , 1 , 0 , 0 , 0 ,
0 , 0 , 0 , 8 , 2 , 0 , 6 , 1 , 0 ,
0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 ,
5 , 8 , 0 , 9 , 1 , 0 , 0 , 0 , 0 };
const int temp[9] = { 1 , 2 , 3, 4, 5, 6, 7, 8, 9};
struct Item
{
int data;
std::vector<int> other;
Item():data(0),other(temp,temp+9){}
inline bool operator==(int x)
{
return x==data?true:false;
}
inline Item& operator=(const Item& src)
{
data = src.data ;
other = src.other;
return (*this);
};
inline Item& operator=(int x){
data = x ;
std::(temp,temp+sizeof(temp)/sizeof(temp[0]) , other.begin());
return (*this);
};
void test(size_t x ){
if( other.size() == 2 )
data = other[x];
}
inline operator int(){return data;}
};
struct GroupInfo{
const int Group1,Group2,Group3;
GroupInfo(int g1,int g2,int g3):Group1(g1),Group2(g2),Group3(g3){}
inline bool operator==(GroupInfo& src){
return ((Group1|Group2|Group3)&(src.Group1|src.Group2|src.Group3))?true:false;
}
};
GroupInfo Group[SIZE]={
GroupInfo( 1<<1 , 1<<10 , 1<<19) ,GroupInfo( 1<<1 , 1<<11 , 1<<19) ,GroupInfo( 1<<1 , 1<<12 , 1<<19) ,GroupInfo( 1<<1 , 1<<13 , 1<<20) ,GroupInfo( 1<<1 , 1<<14 , 1<<20) ,GroupInfo( 1<<1 , 1<<15 , 1<<20) ,GroupInfo( 1<<1 , 1<<16 , 1<<21) ,GroupInfo( 1<<1 , 1<<17 , 1<<21) ,GroupInfo( 1<<1 , 1<<18 , 1<<21) ,
GroupInfo( 1<<2 , 1<<10 , 1<<19) ,GroupInfo( 1<<2 , 1<<11 , 1<<19) ,GroupInfo( 1<<2 , 1<<12 , 1<<19) ,GroupInfo( 1<<2 , 1<<13 , 1<<20) ,GroupInfo( 1<<2 , 1<<14 , 1<<20) ,GroupInfo( 1<<2 , 1<<15 , 1<<20) ,GroupInfo( 1<<2 , 1<<16 , 1<<21) ,GroupInfo( 1<<2 , 1<<17 , 1<<21) ,GroupInfo( 1<<2 , 1<<18 , 1<<21) ,
GroupInfo( 1<<3 , 1<<10 , 1<<19) ,GroupInfo( 1<<3 , 1<<11 , 1<<19) ,GroupInfo( 1<<3 , 1<<12 , 1<<19) ,GroupInfo( 1<<3 , 1<<13 , 1<<20) ,GroupInfo( 1<<3 , 1<<14 , 1<<20) ,GroupInfo( 1<<3 , 1<<15 , 1<<20) ,GroupInfo( 1<<3 , 1<<16 , 1<<21) ,GroupInfo( 1<<3 , 1<<17 , 1<<21) ,GroupInfo( 1<<3 , 1<<18 , 1<<21) ,
GroupInfo( 1<<4 , 1<<10 , 1<<22) ,GroupInfo( 1<<4 , 1<<11 , 1<<22) ,GroupInfo( 1<<4 , 1<<12 , 1<<22) ,GroupInfo( 1<<4 , 1<<13 , 1<<23) ,GroupInfo( 1<<4 , 1<<14 , 1<<23) ,GroupInfo( 1<<4 , 1<<15 , 1<<23) ,GroupInfo( 1<<4 , 1<<16 , 1<<24) ,GroupInfo( 1<<4 , 1<<17 , 1<<24) ,GroupInfo( 1<<4 , 1<<18 , 1<<24) ,
GroupInfo( 1<<5 , 1<<10 , 1<<22) ,GroupInfo( 1<<5 , 1<<11 , 1<<22) ,GroupInfo( 1<<5 , 1<<12 , 1<<22) ,GroupInfo( 1<<5 , 1<<13 , 1<<23) ,GroupInfo( 1<<5 , 1<<14 , 1<<23) ,GroupInfo( 1<<5 , 1<<15 , 1<<23) ,GroupInfo( 1<<5 , 1<<16 , 1<<24) ,GroupInfo( 1<<5 , 1<<17 , 1<<24) ,GroupInfo( 1<<5 , 1<<18 , 1<<24) ,
GroupInfo( 1<<6 , 1<<10 , 1<<22) ,GroupInfo( 1<<6 , 1<<11 , 1<<22) ,GroupInfo( 1<<6 , 1<<12 , 1<<22) ,GroupInfo( 1<<6 , 1<<13 , 1<<23) ,GroupInfo( 1<<6 , 1<<14 , 1<<23) ,GroupInfo( 1<<6 , 1<<15 , 1<<23) ,GroupInfo( 1<<6 , 1<<16 , 1<<24) ,GroupInfo( 1<<6 , 1<<17 , 1<<24) ,GroupInfo( 1<<6 , 1<<18 , 1<<24) ,
GroupInfo( 1<<7 , 1<<10 , 1<<25) ,GroupInfo( 1<<7 , 1<<11 , 1<<25) ,GroupInfo( 1<<7 , 1<<12 , 1<<25) ,GroupInfo( 1<<7 , 1<<13 , 1<<26) ,GroupInfo( 1<<7 , 1<<14 , 1<<26) ,GroupInfo( 1<<7 , 1<<15 , 1<<26) ,GroupInfo( 1<<7 , 1<<16 , 1<<27) ,GroupInfo( 1<<7 , 1<<17 , 1<<27) ,GroupInfo( 1<<7 , 1<<18 , 1<<27) ,
GroupInfo( 1<<8 , 1<<10 , 1<<25) ,GroupInfo( 1<<8 , 1<<11 , 1<<25) ,GroupInfo( 1<<8 , 1<<12 , 1<<25) ,GroupInfo( 1<<8 , 1<<13 , 1<<26) ,GroupInfo( 1<<8 , 1<<14 , 1<<26) ,GroupInfo( 1<<8 , 1<<15 , 1<<26) ,GroupInfo( 1<<8 , 1<<16 , 1<<27) ,GroupInfo( 1<<8 , 1<<17 , 1<<27) ,GroupInfo( 1<<8 , 1<<18 , 1<<27) ,
GroupInfo( 1<<9 , 1<<10 , 1<<25) ,GroupInfo( 1<<9 , 1<<11 , 1<<25) ,GroupInfo( 1<<9 , 1<<12 , 1<<25) ,GroupInfo( 1<<9 , 1<<13 , 1<<26) ,GroupInfo( 1<<9 , 1<<14 , 1<<26) ,GroupInfo( 1<<9 , 1<<15 , 1<<26) ,GroupInfo( 1<<9 , 1<<16 , 1<<27) ,GroupInfo( 1<<9 , 1<<17 , 1<<27) ,GroupInfo( 1<<9 , 1<<18 , 1<<27)
};
bool AI(std::vector<Item>& game)
{
bool bMoveflag = false;
for(size_t x = 0 ; x < game.size() ; ++x ){
if( 0 != game[x].data ){//依次检查每个位置
game[x].other.resize(0);
continue;
}
//当前位置没有数字
std::vector<int> vTemp;
for(int i = 0 ; i < 81 ; ++i )
if( Group[x]==Group[i] )
vTemp.push_back ( game[i].data );
;
vTemp.erase( std::remove(vTemp.begin(),vTemp.end() , 0 ) , vTemp.end() );
//移除同组已经出现的数字
for(std::vector<int>::iterator Iter = vTemp.begin() ; Iter !=vTemp.end() ; ++ Iter )
std::replace(game[x].other.begin() , game[x].other.end() , (*Iter) , 0 );
game[x].other.erase( std::remove(game[x].other.begin(),game[x].other.end() , 0 ) ,game[x].other.end() );
if( ( 1 == game[x].other.size())&&( 0 != game[x].other[0] ) ){
game[x].data = game[x].other[0];
bMoveflag = true;
}
}
return bMoveflag;
}
struct OtherIs2Opt{
bool operator()(Item& item)
{return ( item.other.size()==2)?true:false;}
};
struct testBackOpt
{
bool bBack;
testBackOpt():bBack(false){}
void operator()(Item& item)
{
if( ( item.data==0)&&(item.other.size()==0) )
bBack = true;
}
};
bool AdvanceAI(std::vector<Item>& game)
{
std::vector<Item> Back = game;
std::vector<Item>::iterator iItem = std::find_if( Back.begin() , Back.end() , OtherIs2Opt() );
if( iItem != Back.end() ){
for(size_t i = 0 ; i < (*iItem).other.size() ; ++i ){
(*iItem).test( i );
for( ; AI( Back ) ;);
if( std::for_each( Back.begin() , Back.end() , testBackOpt() ).bBack ){//是否结束回滚
Back = game;
iItem = std::find_if( Back.begin() , Back.end() , OtherIs2Opt() );
continue;
}
if( std::count( Back.begin() , Back.end() , 0 ) ){//判断是否结束
if( AdvanceAI( Back ) ){//没有结束,继续下一步递归
game = Back ;
return true;
}
Back = game;
iItem = std::find_if( Back.begin() , Back.end() , OtherIs2Opt() );
continue;
}else{//back为结果
game = Back ;
return true;
}
}
}
return false;
}
int main(int argc, char* argv[])
{//初始化棋盘
std::vector<Item> game(SIZE);
std::(Data,Data+SIZE , game.begin() );
for( ; AI( game ) ;);
if( std::count( game.begin() , game.end() , 0 ) ){
if( !AdvanceAI( game ) )
printf("没解出来 ");
}
for(int x = 0 ; x < 81 ; ++x ){
printf(" %d",game[x].data );
if( 0 == (x +1)% 9 )
printf(" ");
}
return 0;算法如下,先构造一个9*9的结构体数组,表示棋盘数据0表示空白未知,结构体中每个元素
包含一个1-9的数组作为备选数字.
构建好一个棋盘之后依次对每个空白位置进行备选数字中进行删除.当前已经填写的数字就全部删除
如果只剩下一个备选数字就将该备选数字填写到棋盘数据中.该算法在AI这个函数中实现.
当无法用AI算法推出结果的时候就进行回朔法,见找到有两个备选数字的元素,选取其中一个,
继续往下填写,直到全部填写上去(结束),或者无法继续填写(某个空白位置没有备选元素).
如果无法继续填写下去就表示最初选择的那个数据是错误的,直接填写另外一个数据到棋盘上.
该算法在AdvanceAI中体现出来
如此下去就能够填写出棋盘中的所有元素.
#include <cstdio>
#include <vector>
#include <algorithm>
enum{SIZE=81};
unsigned int Data[SIZE]={//未解棋盘数据
0 , 9 , 0 , 0 , 6 , 0 , 5 , 4 , 8 ,
4 , 0 , 3 , 0 , 8 , 0 , 9 , 0 , 0 ,
8 , 6 , 5 , 4 , 7 , 9 , 1 , 2 , 3 ,
0 , 5 , 6 , 3 , 9 , 0 , 4 , 0 , 1 ,
1 , 4 , 0 , 0 , 5 , 0 , 2 , 0 , 0 ,
0 , 0 , 0 , 0 , 4 , 1 , 0 , 0 , 0 ,
0 , 0 , 0 , 8 , 2 , 0 , 6 , 1 , 0 ,
0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 ,
5 , 8 , 0 , 9 , 1 , 0 , 0 , 0 , 0 };
const int temp[9] = { 1 , 2 , 3, 4, 5, 6, 7, 8, 9};
struct Item
{
int data;
std::vector<int> other;
Item():data(0),other(temp,temp+9){}
inline bool operator==(int x)
{
return x==data?true:false;
}
inline Item& operator=(const Item& src)
{
data = src.data ;
other = src.other;
return (*this);
};
inline Item& operator=(int x){
data = x ;
std::(temp,temp+sizeof(temp)/sizeof(temp[0]) , other.begin());
return (*this);
};
void test(size_t x ){
if( other.size() == 2 )
data = other[x];
}
inline operator int(){return data;}
};
struct GroupInfo{
const int Group1,Group2,Group3;
GroupInfo(int g1,int g2,int g3):Group1(g1),Group2(g2),Group3(g3){}
inline bool operator==(GroupInfo& src){
return ((Group1|Group2|Group3)&(src.Group1|src.Group2|src.Group3))?true:false;
}
};
GroupInfo Group[SIZE]={
GroupInfo( 1<<1 , 1<<10 , 1<<19) ,GroupInfo( 1<<1 , 1<<11 , 1<<19) ,GroupInfo( 1<<1 , 1<<12 , 1<<19) ,GroupInfo( 1<<1 , 1<<13 , 1<<20) ,GroupInfo( 1<<1 , 1<<14 , 1<<20) ,GroupInfo( 1<<1 , 1<<15 , 1<<20) ,GroupInfo( 1<<1 , 1<<16 , 1<<21) ,GroupInfo( 1<<1 , 1<<17 , 1<<21) ,GroupInfo( 1<<1 , 1<<18 , 1<<21) ,
GroupInfo( 1<<2 , 1<<10 , 1<<19) ,GroupInfo( 1<<2 , 1<<11 , 1<<19) ,GroupInfo( 1<<2 , 1<<12 , 1<<19) ,GroupInfo( 1<<2 , 1<<13 , 1<<20) ,GroupInfo( 1<<2 , 1<<14 , 1<<20) ,GroupInfo( 1<<2 , 1<<15 , 1<<20) ,GroupInfo( 1<<2 , 1<<16 , 1<<21) ,GroupInfo( 1<<2 , 1<<17 , 1<<21) ,GroupInfo( 1<<2 , 1<<18 , 1<<21) ,
GroupInfo( 1<<3 , 1<<10 , 1<<19) ,GroupInfo( 1<<3 , 1<<11 , 1<<19) ,GroupInfo( 1<<3 , 1<<12 , 1<<19) ,GroupInfo( 1<<3 , 1<<13 , 1<<20) ,GroupInfo( 1<<3 , 1<<14 , 1<<20) ,GroupInfo( 1<<3 , 1<<15 , 1<<20) ,GroupInfo( 1<<3 , 1<<16 , 1<<21) ,GroupInfo( 1<<3 , 1<<17 , 1<<21) ,GroupInfo( 1<<3 , 1<<18 , 1<<21) ,
GroupInfo( 1<<4 , 1<<10 , 1<<22) ,GroupInfo( 1<<4 , 1<<11 , 1<<22) ,GroupInfo( 1<<4 , 1<<12 , 1<<22) ,GroupInfo( 1<<4 , 1<<13 , 1<<23) ,GroupInfo( 1<<4 , 1<<14 , 1<<23) ,GroupInfo( 1<<4 , 1<<15 , 1<<23) ,GroupInfo( 1<<4 , 1<<16 , 1<<24) ,GroupInfo( 1<<4 , 1<<17 , 1<<24) ,GroupInfo( 1<<4 , 1<<18 , 1<<24) ,
GroupInfo( 1<<5 , 1<<10 , 1<<22) ,GroupInfo( 1<<5 , 1<<11 , 1<<22) ,GroupInfo( 1<<5 , 1<<12 , 1<<22) ,GroupInfo( 1<<5 , 1<<13 , 1<<23) ,GroupInfo( 1<<5 , 1<<14 , 1<<23) ,GroupInfo( 1<<5 , 1<<15 , 1<<23) ,GroupInfo( 1<<5 , 1<<16 , 1<<24) ,GroupInfo( 1<<5 , 1<<17 , 1<<24) ,GroupInfo( 1<<5 , 1<<18 , 1<<24) ,
GroupInfo( 1<<6 , 1<<10 , 1<<22) ,GroupInfo( 1<<6 , 1<<11 , 1<<22) ,GroupInfo( 1<<6 , 1<<12 , 1<<22) ,GroupInfo( 1<<6 , 1<<13 , 1<<23) ,GroupInfo( 1<<6 , 1<<14 , 1<<23) ,GroupInfo( 1<<6 , 1<<15 , 1<<23) ,GroupInfo( 1<<6 , 1<<16 , 1<<24) ,GroupInfo( 1<<6 , 1<<17 , 1<<24) ,GroupInfo( 1<<6 , 1<<18 , 1<<24) ,
GroupInfo( 1<<7 , 1<<10 , 1<<25) ,GroupInfo( 1<<7 , 1<<11 , 1<<25) ,GroupInfo( 1<<7 , 1<<12 , 1<<25) ,GroupInfo( 1<<7 , 1<<13 , 1<<26) ,GroupInfo( 1<<7 , 1<<14 , 1<<26) ,GroupInfo( 1<<7 , 1<<15 , 1<<26) ,GroupInfo( 1<<7 , 1<<16 , 1<<27) ,GroupInfo( 1<<7 , 1<<17 , 1<<27) ,GroupInfo( 1<<7 , 1<<18 , 1<<27) ,
GroupInfo( 1<<8 , 1<<10 , 1<<25) ,GroupInfo( 1<<8 , 1<<11 , 1<<25) ,GroupInfo( 1<<8 , 1<<12 , 1<<25) ,GroupInfo( 1<<8 , 1<<13 , 1<<26) ,GroupInfo( 1<<8 , 1<<14 , 1<<26) ,GroupInfo( 1<<8 , 1<<15 , 1<<26) ,GroupInfo( 1<<8 , 1<<16 , 1<<27) ,GroupInfo( 1<<8 , 1<<17 , 1<<27) ,GroupInfo( 1<<8 , 1<<18 , 1<<27) ,
GroupInfo( 1<<9 , 1<<10 , 1<<25) ,GroupInfo( 1<<9 , 1<<11 , 1<<25) ,GroupInfo( 1<<9 , 1<<12 , 1<<25) ,GroupInfo( 1<<9 , 1<<13 , 1<<26) ,GroupInfo( 1<<9 , 1<<14 , 1<<26) ,GroupInfo( 1<<9 , 1<<15 , 1<<26) ,GroupInfo( 1<<9 , 1<<16 , 1<<27) ,GroupInfo( 1<<9 , 1<<17 , 1<<27) ,GroupInfo( 1<<9 , 1<<18 , 1<<27)
};
bool AI(std::vector<Item>& game)
{
bool bMoveflag = false;
for(size_t x = 0 ; x < game.size() ; ++x ){
if( 0 != game[x].data ){//依次检查每个位置
game[x].other.resize(0);
continue;
}
//当前位置没有数字
std::vector<int> vTemp;
for(int i = 0 ; i < 81 ; ++i )
if( Group[x]==Group[i] )
vTemp.push_back ( game[i].data );
;
vTemp.erase( std::remove(vTemp.begin(),vTemp.end() , 0 ) , vTemp.end() );
//移除同组已经出现的数字
for(std::vector<int>::iterator Iter = vTemp.begin() ; Iter !=vTemp.end() ; ++ Iter )
std::replace(game[x].other.begin() , game[x].other.end() , (*Iter) , 0 );
game[x].other.erase( std::remove(game[x].other.begin(),game[x].other.end() , 0 ) ,game[x].other.end() );
if( ( 1 == game[x].other.size())&&( 0 != game[x].other[0] ) ){
game[x].data = game[x].other[0];
bMoveflag = true;
}
}
return bMoveflag;
}
struct OtherIs2Opt{
bool operator()(Item& item)
{return ( item.other.size()==2)?true:false;}
};
struct testBackOpt
{
bool bBack;
testBackOpt():bBack(false){}
void operator()(Item& item)
{
if( ( item.data==0)&&(item.other.size()==0) )
bBack = true;
}
};
bool AdvanceAI(std::vector<Item>& game)
{
std::vector<Item> Back = game;
std::vector<Item>::iterator iItem = std::find_if( Back.begin() , Back.end() , OtherIs2Opt() );
if( iItem != Back.end() ){
for(size_t i = 0 ; i < (*iItem).other.size() ; ++i ){
(*iItem).test( i );
for( ; AI( Back ) ;);
if( std::for_each( Back.begin() , Back.end() , testBackOpt() ).bBack ){//是否结束回滚
Back = game;
iItem = std::find_if( Back.begin() , Back.end() , OtherIs2Opt() );
continue;
}
if( std::count( Back.begin() , Back.end() , 0 ) ){//判断是否结束
if( AdvanceAI( Back ) ){//没有结束,继续下一步递归
game = Back ;
return true;
}
Back = game;
iItem = std::find_if( Back.begin() , Back.end() , OtherIs2Opt() );
continue;
}else{//back为结果
game = Back ;
return true;
}
}
}
return false;
}
int main(int argc, char* argv[])
{//初始化棋盘
std::vector<Item> game(SIZE);
std::(Data,Data+SIZE , game.begin() );
for( ; AI( game ) ;);
if( std::count( game.begin() , game.end() , 0 ) ){
if( !AdvanceAI( game ) )
printf("没解出来 ");
}
for(int x = 0 ; x < 81 ; ++x ){
printf(" %d",game[x].data );
if( 0 == (x +1)% 9 )
printf(" ");
}
return 0;