遗传算法tspmatlab
❶ 遗传算法求解tsp问题的matlab程序
TSP问题遗传算法通用Matlab程序
程序一:主程序
%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序 %D是距离矩阵,n为种群个数 %参数a是中国31个城市的坐标
%C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定 %m为适应值归一化淘汰加速指数,最好取为1,2,3,4,不宜太大
%alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,建议取0.8~1.0之间的值
%R为最短路径,Rlength为路径长度
function [R,Rlength]=geneticTSP(D,a,n,C,m,alpha) [N,NN]=size(D);
farm=zeros(n,N);%用于存储种群 for i=1:n
farm(i,:)=randperm(N);%随机生成初始种群 end
R=farm(1,:); subplot(1,3,1)
scatter(a(:,1),a(:,2),'x') pause(1)
subplot(1,3,2) plotaiwa(a,R) pause(1)
farm(1,:)=R;
len=zeros(n,1);%存储路径长度
fitness=zeros(n,1);%存储归一化适应值 counter=0;
while counter for i=1:n
len(i,1)=myLength(D,farm(i,:));%计算路径长度 end
maxlen=max(len); minlen=min(len);
fitness=fit(len,m,maxlen,minlen);%计算归一化适应值 rr=find(len==minlen);
R=farm(rr(1,1),:);%更新最短路径
FARM=farm;%优胜劣汰,nn记录了复旁仿制的个数 nn=0;
for i=1:n
if fitness(i,1)>=alpha*rand nn=nn+1;
FARM(nn,:)=farm(i,:); end
end
FARM=FARM(1:nn,:);
[aa,bb]=size(FARM);%交叉和变异 while aa if nn<=2 nnper=randperm(2); else
nnper=randperm(nn); end
A=FARM(nnper(1),:); B=FARM(nnper(2),:); [A,B]=intercross(A,B); FARM=[FARM;A;B]; [aa,bb]=size(FARM); end
if aa>n
FARM=FARM(1:n,:);%保持种群规模为n end
farm=FARM; clear FARM
counter=counter+1 end
Rlength=myLength(D,R); subplot(1,3,3) plotaiwa(a,R)
程序二:计算邻接薯闹矩阵
%输入参数a是中国31个城市的坐标 %输出参数D是无向图的赋权邻接矩阵 function D=ff01(a) [c,d]=size(a); D=zeros(c,c); for i=1:c
for j=i:c
bb=(a(i,1)-a(j,1)).^2+(a(i,2)-a(j,2)).^2; D(i,j)=bb^(0.5); D(j,i)=D(i,j); end end
程序三:计算归一化适运手纤应值 %计算归一化适应值的子程序
function fitness=fit(len,m,maxlen,minlen) fitness=len;
for i=1:length(len)
fitness(i,1)=(1-((len(i,1)-minlen)/(maxlen-minlen+0.0001))).^m; end
程序四:交叉和变异的子程序
%交叉算法采用的是由Goldberg和Lingle于1985年提出的PMX(部分匹配交叉) function [a,b]=intercross(a,b) L=length(a);
if L<=10%确定交叉宽度 W=9;
elseif ((L/10)-floor(L/10))>=rand&&L>10 W=ceil(L/10)+8; else
W=floor(L/10)+8; end
p=unidrnd(L-W+1);%随机选择交叉范围,从p到p+W for i=1:W%交叉
x=find(a==b(1,p+i-1)); y=find(b==a(1,p+i-1));
[a(1,p+i-1),b(1,p+i-1)]=exchange(a(1,p+i-1),b(1,p+i-1)); [a(1,x),b(1,y)]=exchange(a(1,x),b(1,y)); end
function [x,y]=exchange(x,y) temp=x; x=y; y=temp;
程序五: 计算路径的子程序
%该路径长度是一个闭合的路径的长度 function len=myLength(D,p) [N,NN]=size(D);
len=D(p(1,N),p(1,1)); for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1)); end
程序六:用于绘制路径示意图的程序 function plotaiwa(a,R)
scatter(a(:,1),a(:,2),'x') hold on
plot([a(R(1),1),a(R(31),1)],[a(R(1),2),a(R(31),2)]) hold on
for i=2:length(R) x0=a(R(i-1),1); y0=a(R(i-1),2); x1=a(R(i),1); y1=a(R(i),2); xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy)
hold on
end
❷ matlab2008遗传算法工具箱采用的是二进制编码还是实数编码
两种编码都有,可以自己选择。
你在MATLAB2008里输入 gaoptimset
会弹出遗传算法的所有的设置选项及默认项。其中,第一行就是个体的编码方式,第一行如下
PopulationType: [ 'bitstring' | 'custom' | {'doubleVector'} ]
其中,bitstring就是二进制编码,而'doubleVector'即实数编码(MATLAB里实数是用double双精度浮点数表示的,精度很高。大括号{}表示是默认设置。
而中间的'custom'是表示用户自己构造个体的编码形式。(参加GA算例,在美国地图中的TSP问题,很帅~
加油,MATLAB是个好软件~~~
❸ 用遗传算法求解10城市旅行商问题,用matlab编程,要可以运行的程序,跪求,必有重谢
%蚂蚁算法
function [Shortest_Route,Shortest_Length]=anttsp(city,iter_max,m,Alpha,Beta,Rho,Q)
n=size(city,1);
d=zeros(n,n);
d=squareform(pdist(city));
Eta=1./d;
Tau=ones(n,n);
Tabu=zeros(m,n);
nC=1;
R_best=zeros(iter_max,n);
L_best=inf.*ones(iter_max,1);
while nC<=iter_max
route=[];
for i=1:ceil(m/n)
route=[route,randperm(n)];
end
Tabu(:,1)=(route(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if isempty(find(visited==k, 1))
J(Jc)=k;
Jc=Jc+1;
end
end
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
Pcum=cumsum(P);
Select=find(Pcum>=rand);
if isempty(Select)%是不是一定能保证Select不为空
Tabu(i,j)=round(1+(n-1)*rand);
else
next_visit=J(Select(1));
Tabu(i,j)=next_visit;
end
end
end
if nC>=2
Tabu(1,:)=R_best(nC-1,:);
end
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+d(R(j),R(j+1));
end
L(i)=L(i)+d(R(1),R(n));
end
L_best(nC)=min(L);
pos=find(L==L_best(nC));
R_best(nC,:)=Tabu(pos(1),:);
nC=nC+1;
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
end
%%随机算法
%city是n行2列的矩阵,每一行表示一个城市的经纬度,一共n个城市
%time表示循环次数,越大,可能找到的路径最短,当然里面有随机性。
function [Shortest_Route,Shortest_Length]=TSP_SuiJiSuanFa(city,times)
n=size(city,1);
d=squareform(pdist(city));
Shortest_Length=inf;
for i=1:times
tempRoute=randperm(n);
tempLength=0;
for j=1:n-1
tempLength=tempLength+d(tempRoute(j),tempRoute(j+1));
end
tempLength=tempLength+d(tempRoute(n),1);
if tempLength<Shortest_Length
Shortest_Length=tempLength;
Shortest_Route=tempRoute;
end
end
end
❹ 求一TSP问题的遗传算法实现的教程,特别要讲解编码的方法
我不会用MATLAB编,会用c#。MATLAB编码步骤应该以下几步:
1、导入n个城市坐标,并把这n个城市编号(1,2,3,4、、、);
2、用城市编号随机生成m个父代(4672、、、;9482、、、);
3、算出每个父代中的城市距离和并记录其值;
4、对每一个父代进行交叉,变异等操作形成子代;
5、算出每个子代中的城市距离和并记录其值;
6、比较父代、子代个体的距离和,留下m个最短的城市距离和对应的个体,若没达到迭代次数,跳到步骤3,若结束,跳到步骤7;
7、显示最优个体(即最短路径的个体)。
❺ 遗传算法求解tsp问题的matlab程序
把下面的(1)-(7)依次存成相应的.m文件,在(7)的m文件下运行就可以了
(1) 适应度函数fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)个体距离计算函数 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
end
(3)交叉操作函数 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end
end
(4)对调函数 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
end
(5)变异函数 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);
temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)连点画图函数 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end
end
(7)主函数
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=50; %%城市的个数
M=100; %%种群的个数
C=100; %%迭代次数
C_old=C;
m=2; %%适应值归一化淘汰加速指数
Pc=0.4; %%交叉概率
Pmutation=0.2; %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%如果城市之间的距离矩阵已知,可以在下面赋值给D,否则就随机生成
%%生成初始群体
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%随机选择一个种群
R=popm(1,:);
figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%画出种群各城市之间的连线
axis([-3 3 -3 3]);
%%初始化种群及其适应函数
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);
distance_min=zeros(C+1,1); %%各次迭代的最小的种群的距离
while C>=0
fprintf('迭代第%d次\n',C);
%%选择操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次选择都保存最优的种群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];
%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%变异操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求适应度函数
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);
❻ 求一份基于matlab的TSP问题源代码
java">function[Shortest_Route,Shortest_Length]=anttsp(city,iter_max,m,Alpha,Beta,Rho,Q)
n=size(city,1);
d=zeros(n,n);
d=squareform(pdist(city));
Eta=1./d;
Tau=ones(n,n);
Tabu=zeros(m,n);
nC=1;
R_best=zeros(iter_max,n);
L_best=inf.*ones(iter_max,1);whilenC<=iter_max
route=[];
fori=1:ceil(m/n)
route=[route,randperm(n)];
end
Tabu(:,1)=(route(1,1:m))';
forj=2:n
fori=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
fork=1:n
ifisempty(find(visited==k,1))
J(Jc)=k;
Jc=Jc+1;
end
end
fork=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
Pcum=cumsum(P);
Select=find(Pcum>=rand);
ifisempty(Select)%是不是一定能保证Select不为空
Tabu(i,j)=round(1+(n-1)*rand);
else
next_visit=J(Select(1));
Tabu(i,j)=next_visit;
end
end
end
ifnC>=2
Tabu(1,:)=R_best(nC-1,:);
end
L=zeros(m,1);
fori=1:m
R=Tabu(i,:);
forj=1:(n-1)
L(i)=L(i)+d(R(j),R(j+1));
end
L(i)=L(i)+d(R(1),R(n));
end
L_best(nC)=min(L);
pos=find(L==L_best(nC));
R_best(nC,:)=Tabu(pos(1),:);
nC=nC+1;
Delta_Tau=zeros(n,n);
fori=1:m
forj=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
end
❼ MATLAB中遗传算法编程中,二进制编码如何处理实数变量
假如你想要编码为x,设x的范围是【min,max】,二进制编码长度为10,那二进解码方式是:x*(max-min)/1023,这个不用开始编码,开始你可以用rand(n,10)产生n个样本的随机数,然后优化即可。
不是能把“数学模型中的目标函数和每一条约束函数分别编程Matlab里的M文件”,是你用遗传算法就必须要编进去,电脑怎么知道往哪个方向优化是好的,要不把你邮箱留下,我给你发个寻求最大值的遗传算法。
❽ tSp Concorder算法原理
tsp问题遗传算法将多目标按照线性加权的方式转化为单目标,然后应用传统遗传算法求解
其中w_i表示第i个目标的权重,f_k表示归一化之后的第i个目标值。我们很容易知道,这类方法的关键是怎么设计权重。比如,Random Weight Genetic Algorithm (RWGA) 采用随机权重的方式,每次计算适应度都对所有个体随机地产生不同目标的权重,然后进行选择操作。Vector-Evaluated Genetic Algorithm (VEGA) 也是基于线性加权的多目标遗传算法。如果有K个目标,VEGA 会随机地将种群分为K个同等大小子种群,在不同的子种群按照不同的目标函数设定目标值,然后再进行选择操作。VEGA 实质上是基于线性加权的多目标遗传算法。VEGA 是第一个多目标遗传算法,开启了十几年的研究潮流。
1.TSP问题是指假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。本文使用遗传算法解决att30问题,即30个城市的旅行商问题。旅行商问题是一个经典的组合优化问题。一个经典的旅行商问题可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。TSP问题可以分为对称和不对称。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图,而不对称TSP则形成有向图。对称性TSP问题可以将解的数量减少了一半。所以本次实验的TSP问题使用att48数据,可在tsplib中下载数据包。演化算法是一类模拟自然界遗传进化规律的仿生学算法,它不是一个具体的算法,而是一个算法簇。遗传算法是演化算法的一个分支,由于遗传算法的整体搜索策略和优化计算是不依赖梯度信息,所以它的应用比较广泛。我们本次实验同样用到了遗传算法(用MATLAB编写)来解决TSP问题。