当前位置:首页 » 操作系统 » alphabeta算法

alphabeta算法

发布时间: 2024-07-21 23:12:00

python 井字棋 ALPHA-BETA剪枝算法和暴力算法 具体代码

#!/usr/bin/env python
'''Tic tac toe in python, Minimax with alpha-beta pruning.'''
import sys
import random
import getopt

# Board: array of 9 int, positionally numbered like this:
# 0 1 2
# 3 4 5
# 6 7 8

# Well-known board positions
WINNING_TRIADS = ((0, 1, 2), (3, 4, 5), (6, 7, 8), (0, 3, 6), (1, 4, 7),
(2, 5, 8), (0, 4, 8), (2, 4, 6))
PRINTING_TRIADS = ((0, 1, 2), (3, 4, 5), (6, 7, 8))
# The order in which slots get checked for absence of a player's token:
SLOTS = (0, 1, 2, 3, 4, 5, 6, 7, 8)

# Internal-use values. Chosen so that the "winner" of a finished
# game has an appropriate value, as X minimizes and O maximizes
# the board's value (function board_valuation() defines "value")
# Internally, the computer always plays Os, even though the markers[]
# array can change based on -r command line flag.
X_token = -1
Open_token = 0
O_token = 1

# Strings for output: player's markers, phrase for end-of-game
MARKERS = ['_', 'O', 'X']
END_PHRASE = ('draw', 'win', 'loss')

HUMAN = 1
COMPUTER = 0

def board_valuation(board, player, next_player, alpha, beta):
'''Dynamic and static evaluation of board position.'''
# Static evaluation - value for next_player
wnnr = winner(board)
if wnnr != Open_token:
# Not a draw or a move left: someone won
return wnnr
elif not legal_move_left(board):
# Draw - no moves left
return 0 # Cat
# If flow-of-control gets here, no winner yet, not a draw.
# Check all legal moves for "player"
for move in SLOTS:
if board[move] == Open_token:
board[move] = player
val = board_valuation(board, next_player, player, alpha, beta)
board[move] = Open_token
if player == O_token: # Maximizing player
if val > alpha:
alpha = val
if alpha >= beta:
return beta
else: # X_token player, minimizing
if val < beta:
beta = val
if beta <= alpha:
return alpha
if player == O_token:
retval = alpha
else:
retval = beta
return retval

def print_board(board):
'''Print the board in human-readable format.
Called with current board (array of 9 ints).
'''
for row in PRINTING_TRIADS:
for hole in row:
print MARKERS[board[hole]],
print

def legal_move_left(board):
''' Returns True if a legal move remains, False if not. '''
for slot in SLOTS:
if board[slot] == Open_token:
return True
return False

def winner(board):
''' Returns -1 if X wins, 1 if O wins, 0 for a cat game,
0 for an unfinished game.
Returns the first "win" it finds, so check after each move.
Note that clever choices of X_token, O_token, Open_token
make this work better.
'''
for triad in WINNING_TRIADS:
triad_sum = board[triad[0]] + board[triad[1]] + board[triad[2]]
if triad_sum == 3 or triad_sum == -3:
return board[triad[0]] # Take advantage of "_token" values
return 0

def determine_move(board):
''' Determine Os next move. Check that a legal move remains before calling.
Randomly picks a single move from any group of moves with the same value.
'''
best_val = -2 # 1 less than min of O_token, X_token
my_moves = []
for move in SLOTS:
if board[move] == Open_token:
board[move] = O_token
val = board_valuation(board, X_token, O_token, -2, 2)
board[move] = Open_token
print "My move", move, "causes a", END_PHRASE[val]
if val > best_val:
best_val = val
my_moves = [move]
if val == best_val:
my_moves.append(move)
return random.choice(my_moves)

def recv_human_move(board):
''' Encapsulate human's input reception and validation.
Call with current board configuration. Returns
an int of value 0..8, the Human's move.
'''
looping = True
while looping:
try:
inp = input("Your move: ")
yrmv = int(inp)
if 0 <= yrmv <= 8:
if board[yrmv] == Open_token:
looping = False
else:
print "Spot already filled."
else:
print "Bad move, no donut."

except EOFError:
print
sys.exit(0)
except NameError:
print "Not 0-9, try again."
except SyntaxError:
print "Not 0-9, try again."

if looping:
print_board(board)

return yrmv

def usage(progname):
'''Call with name of program, to explain its usage.'''
print progname + ": Tic Tac Toe in python"
print "Usage:", progname, "[-h] [-c] [-r] [-x] [-X]"
print "Flags:"
print "-x, -X: print this usage message, then exit."
print "-h: human goes first (default)"
print "-c: computer goes first"
print "-r: computer is X, human is O"
print "The computer O and the human plays X by default."

def main():
'''Call without arguments from __main__ context.'''
try:
opts, args = getopt.getopt(sys.argv[1:], "chrxX",
["human", "computer", "help"])
except getopt.GetoptError:
# print help information and exit:
usage(sys.argv[0])
sys.exit(2)

next_move = HUMAN # Human goes first by default

for opt, arg in opts:
if opt == "-h":
next_move = HUMAN
if opt == "-c":
next_move = COMPUTER
if opt == "-r":
MARKERS[-1] = 'O'
MARKERS[1] = 'X'
if opt in ("-x", "-X", "--help"):
usage(sys.argv[0])
sys.exit(1)

# Initial state of board: all open spots.
board = [Open_token, Open_token, Open_token, Open_token, Open_token,
Open_token, Open_token, Open_token, Open_token]

# State machine to decide who goes next, and when the game ends.
# This allows letting computer or human go first.
while legal_move_left(board) and winner(board) == Open_token:
print
print_board(board)

if next_move == HUMAN and legal_move_left(board):
humanmv = recv_human_move(board)
board[humanmv] = X_token
next_move = COMPUTER

if next_move == COMPUTER and legal_move_left(board):
mymv = determine_move(board)
print "I choose", mymv
board[mymv] = O_token
next_move = HUMAN

print_board(board)
# Final board state/winner and congratulatory output.
try:
# "You won" should never appear on output: the program
# should always at least draw.
print ["Cat got the game", "I won", "You won"][winner(board)]
except IndexError:
print "Really bad error, winner is", winner(board)

sys.exit(0)
#-------
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print
sys.exit(1)

Ⅱ 10、填空在AlphaBeta剪枝算法中,我们把一个结点可能取值的上界记作____值

这个问题问的不是很清楚,个人理解,在AlphaBeta剪枝算法中,可以把一个节点可能取值的上界记作 Beta 值。
AlphaBeta剪枝算法是对极大极小算法的优化,效率更高。极大极小是一种暴力搜索策略,需要遍历所有可能的情况,随着节点数特别是深度的增加,算法性能会大幅下降。AlphaBeta剪枝算法采用递归的方式进行倒推估算,可以在搜索过程中剪除无用的分支,从而减少不必要的搜索(这些搜索中不会有满足要求的答案),提升算法的效率。
可以这样简单地理解吧,每一层的节点都有Alpha(下界)、Beta(上界),而且是动态调整的,如果在推导过程中发现 Alpha>=Beta,那么就可以终止当前节点往下各层级的搜索,达到提高效率的目的。

Ⅲ alpha-beta搜索算法思想(十万火急)

博弈啊,我以前写过,大致框架是:

int search(,颜色,deep,alpha,beta)
{
if(deep=最大搜索步数)
return 估值(局面,颜色);
for(遍历所有可行走法)
{
局面.走棋;
Score=-int search(局面,-颜色,deep+1,-beta,-alpha)
if(Score>=beta)
return(Score);
if(Score>alpha)
alpha=Score;
局面.撤销走棋;
}
return 出现过的最大Score;
}

调用的时候是 search(局面,电脑的颜色,0,负无穷,正无穷),得到一个局面的评分

热点内容
x86linux 发布:2024-11-25 22:09:24 浏览:449
qq群怎么设置上传 发布:2024-11-25 22:08:37 浏览:15
加密户籍 发布:2024-11-25 22:08:32 浏览:213
newman算法 发布:2024-11-25 21:34:55 浏览:200
a算法概念 发布:2024-11-25 21:24:16 浏览:587
jquery源码书籍 发布:2024-11-25 21:19:50 浏览:803
银行卡输入密码超限怎么办 发布:2024-11-25 21:09:07 浏览:958
编译指令多发 发布:2024-11-25 20:58:17 浏览:751
java上传文件到服务器 发布:2024-11-25 20:52:47 浏览:741
轴加工编程 发布:2024-11-25 20:52:12 浏览:412