当前位置:首页 » 操作系统 » pid程序算法

pid程序算法

发布时间: 2024-06-21 23:19:40

① PID算法的C语言实现

基本流程

积分环节:主要是用来消除 静差 (系统稳定后输出值和设定值之间的差值,积分环节实际上就是偏差累积的过程,把累积的误差加到原来系统上以抵消系统造成的静差)

微分环节:反映了偏差信号的变化规律,根据偏差信号的变化规律来进行超前调节,从而增加系统的快速性

对上述公式进行离散化(采样):两个公式

增量型PID:

通过增量型PID公式可以看出,最终表达结果和最近三次的偏差有关,最终输出结果应该为:

首先定义结构变量体:

然后初始化变量

最后编写控制算法

基本算法,没有考虑死区问题,没有设定上下限

在启动、结束或大幅度增减设定时,短时间内系统输出有很大的偏差,会造成PID运算的积分积累,导致控制量超过执行机构可能允许的最大动作范围对应的极限控制量,从而引起较大的超调,甚至是振荡。

为了克服这个问题,引入积分分离的概念,即当被控量和设定值偏差较大时,取消积分作用;当被控量接近设定值时,引入积分控制,以消除静差,提高精度。

abs :绝对值

令index=0使积分环节失效

积分饱和现象:如果系统存在一个方向的偏差,PID控制器的输出由于积分作用的不断累加而加大,从而导致执行机构达到极限位置。此时计算器输出量超出正常运行范围而进入饱和区,一旦系统出现反向偏差,输出量将逐渐从饱和区退出,进入饱和区越深则退出饱和区时间越长,在这段时间里,执行机构仍然停留在极限位置而不随偏差反向而立即做出相应改变,造成性能恶化。

采用梯形积分能够减小余差,提高精度

改变积分系数,若偏差大,积分作用减弱,系数减小;若偏差小,积分作用增强,系数增大。

变积分PID的基本思想是设法改变积分项的累加速度,使其与偏差大小对应。

使整个系统的稳定速度非常快

比例系数Kp的作用是加快系统的响应速度提高系统的调节精度

积分系数Ki的作用是消除系统的稳态误差

微分系数Kd的作用是改善系统的动态特性

反应系统性能的两个参数是系统误差和误差变化律

② 一文搞懂PID控制算法

PID算法是工业应用中最广泛算法之一,在闭环系统的控制中,可自动对控制系统进行准确且迅速的校正。PID算法已经有100多年历史,在四轴飞行器,平衡小车、汽车定速巡航、温度控制器等场景均有应用。

之前做过循迹车项目,简单循迹摇摆幅度较大,效果如下所示:

PID算法优化后,循迹稳定性能较大提升,效果如下所示:

PID算法:就是“比例(proportional)、积分(integral)、微分(derivative)”,是一种常见的“保持稳定”控制算法。

常规的模拟PID控制系统原理框图如下所示:

因此可以得出e(t)和u(t)的关系:

其中:

Kp:比例增益,是调适参数;

Ki:积分增益,也是调适参数;

Kd:微分增益,也是调适参数;

e:误差=设定值(SP)- 回授值(PV);

t:目前时间。

数学公式可能比较枯燥,通过以下例子,了解PID算法的应用。

例如,使用控制器使一锅水的温度保持在50℃,小于50℃就让它加热,大于50度就断电不就行了?

没错,在要求不高的情况下,确实可以这么干,如果换一种说法,你就知道问题出在哪里了。

如果控制对象是一辆汽车呢?要是希望汽车的车速保持在50km/h不动,这种方法就存在问题了。

设想一下,假如汽车的定速巡航电脑在某一时间测到车速是45km/h,它立刻命令发动机:加速!

结果,发动机那边突然来了个100%全油门,嗡的一下汽车急加速到了60km/h,这时电脑又发出命令:刹车!结果乘客吐......

所以,在大多数场合中,用“开关量”来控制一个物理量就显得比较简单粗暴了,有时候是无法保持稳定的,因为单片机、传感器不是无限快的,采集、控制需要时间。

而且,控制对象具有惯性,比如将热水控制器拔掉,它的“余热”即热惯性可能还会使水温继续升高一小会。

此时就需要使用PID控制算法了。

接着咱再来详细了解PID控制算法的三个最基本的参数:Kp比例增益、Ki积分增益、Kd微分增益。

1、Kp比例增益

Kp比例控制考虑当前误差,误差值和一个正值的常数Kp(表示比例)相乘。需要控制的量,比如水温,有它现在的 当前值 ,也有我们期望的 目标值 。

当两者差距不大时,就让加热器“轻轻地”加热一下。

要是因为某些原因,温度降低了很多,就让加热器“稍稍用力”加热一下。

要是当前温度比目标温度低得多,就让加热器“开足马力”加热,尽快让水温到达目标附近。

这就是P的作用,跟开关控制方法相比,是不是“温文尔雅”了很多。

实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制了~

Kp越大,调节作用越激进,Kp调小会让调节作用更保守。

若你正在制作一个平衡车,有了P的作用,你会发现,平衡车在平衡角度附近来回“狂抖”,比较难稳住。

2、Kd微分增益

Kd微分控制考虑将来误差,计算误差的一阶导,并和一个正值的常数Kd相乘。

有了P的作用,不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。

设想有一个弹簧:现在在平衡位置上,拉它一下,然后松手,这时它会震荡起来,因为阻力很小,它可能会震荡很长时间,才会重新停在平衡位置。

请想象一下:要是把上图所示的系统浸没在水里,同样拉它一下 :这种情况下,重新停在平衡位置的时间就短得多。

此时需要一个控制作用,让被控制的物理量的“变化速度”趋于0,即类似于“阻尼”的作用。

因为,当比较接近目标时,P的控制作用就比较小了,越接近目标,P的作用越温柔,有很多内在的或者外部的因素,使控制量发生小范围的摆动。

D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。

Kd参数越大,向速度相反方向刹车的力道就越强,如果是平衡小车,加上P和D两种控制作用,如果参数调节合适,它应该可以站起来了。

3、Ki积分增益

Ki积分控制考虑过去误差,将误差值过去一段时间和(误差和)乘以一个正值的常数Ki。

还是以热水为例,假如有个人把加热装置带到了非常冷的地方,开始烧水了,需要烧到50℃。

在P的作用下,水温慢慢升高,直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。

这可怎么办?

P兄这样想:我和目标已经很近了,只需要轻轻加热就可以了。

D兄这样想:加热和散热相等,温度没有波动,我好像不用调整什么。

于是,水温永远地停留在45℃,永远到不了50℃。

根据常识,我们知道,应该进一步增加加热的功率,可是增加多少该如何计算呢?

前辈科学家们想到的方法是真的巧妙,设置一个积分量,只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。

这样一来,即使45℃和50℃相差不是太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加,系统就会慢慢意识到:还没有到达目标温度,该增加功率啦!

到了目标温度后,假设温度没有波动,积分值就不会再变动,这时,加热功率仍然等于散热功率,但是,温度是稳稳的50℃。

Ki的值越大,积分时乘的系数就越大,积分效果越明显,所以,I的作用就是,减小静态情况下的误差,让受控物理量尽可能接近目标值。

I在使用时还有个问题:需要设定积分限制,防止在刚开始加热时,就把积分量积得太大,难以控制。

PID算法的参数调试是指通过调整控制参数(比例增益、积分增益/时间、微分增益/时间) 让系统达到最佳的控制效果 。

调试中稳定性(不会有发散性的震荡)是首要条件,此外,不同系统有不同的行为,不同的应用其需求也不同,而且这些需求还可能会互相冲突。

PID算法只有三个参数,在原理上容易说明,但PID算法参数调试是一个困难的工作,因为要符合一些特别的判据,而且PID控制有其限制存在。

1、稳定性

若PID算法控制器的参数未挑选妥当,其控制器输出可能是不稳定的,也就是其输出发散,过程中可能有震荡,也可能没有震荡,且其输出只受饱和或是机械损坏等原因所限制。不稳定一般是因为过大增益造成,特别是针对延迟时间很长的系统。

2、最佳性能

PID控制器的最佳性能可能和针对过程变化或是设定值变化有关,也会随应用而不同。

两个基本的需求是调整能力(regulation,干扰拒绝,使系统维持在设定值)及命令追随 (设定值变化下,控制器输出追随设定值的反应速度)。有关命令追随的一些判据包括有上升时间及整定时间。有些应用可能因为安全考量,不允许输出超过设定值,也有些应用要求在到达设定值过程中的能量可以最小化。

3、各调试方法对比

4、调整PID参数对系统的影响

③ PID算法的算法种类

离散化公式:
△u(k)= u(k)- u(k-1)
△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]
进一步可以改写成
△u(k)=Ae(k)-Be(k-1)+Ce(k-2)
对于增量式算法,可以选择的功能有:
(1) 滤波的选择
可以对输入加一个前置滤波器,使得进入控制算法的给定值不突变,而是有一定惯性延迟的缓变量。
(2) 系统的动态过程加速
在增量式算法中,比例项与积分项的符号有以下关系:如果被控量继续偏离给定值,则这两项符号相同,而当被控量向给定值方向变化时,则这两项的符号相反。
由于这一性质,当被控量接近给定值的时候,反号的比例作用阻碍了积分作用,因而避免了积分超调以及随之带来的振荡,这显然是有利于控制的。但如果被控量远未接近给定值,仅刚开始向给定值变化时,由于比例和积分反向,将会减慢控制过程。
为了加快开始的动态过程,我们可以设定一个偏差范围v,当偏差|e(t)|< β时,即被控量接近给定值时,就按正常规律调节,而当|e(t)|>= β时,则不管比例作用为正或为负,都使它向有利于接近给定值的方向调整,即取其值为|e(t)-e(t-1)|,其符号与积分项一致。利用这样的算法,可以加快控制的动态过程。
(3) PID增量算法的饱和作用及其抑制
在PID增量算法中,由于执行元件本身是机械或物理的积分储存单元,如果给定值发生突变时,由算法的比例部分和微分部分计算出的控制增量可能比较大,如果该值超过了执行元件所允许的最大限度,那么实际上执行的控制增量将时受到限制时的值,多余的部分将丢失,将使系统的动态过程变长,因此,需要采取一定的措施改善这种情况。
纠正这种缺陷的方法是采用积累补偿法,当超出执行机构的执行能力时,将其多余部分积累起来,而一旦可能时,再补充执行。 离散公式:
u(k)=Kp*e(k) +Ki*+Kd*[e(k)-e(k-1)]
对于位置式算法,可以选择的功能有:
a、滤波:同上为一阶惯性滤波
b、饱和作用抑制: 在基本PID控制中,当有较大幅度的扰动或大幅度改变给定值时, 由于此时有较大的偏差,以及系统有惯性和滞后,故在积分项的作用下,往往会产生较大的超调量和长时间的波动。特别是对于温度、成份等变化缓慢的过程,这一现象将更严重。为此可以采用积分分离措施,即偏差较大时,取消积分作用;当偏差较小时才将积分作用投入。
另外积分分离的阈值应视具体对象和要求而定。若阈值太大,达不到积分分离的目的,若太小又有可能因被控量无法跳出积分分离区,只进行PD控制,将会出现残差。
离散化公式:

当时当|e(t)|>β时
q0 = Kp(1+Td/T)
q1 = -Kp(1+2Td/T)
q2 = Kp Td /T
u(t) = u(t-1) + Δu(t)
注:各符号含义如下
u(t);;;;; 控制器的输出值。
e(t);;;;; 控制器输入与设定值之间的误差。
Kp;;;;;;; 比例系数。
Ti;;;;;;; 积分时间常数。
Td;;;;;;; 微分时间常数。(有的地方用Kd表示)
T;;;;;;;; 调节周期。
β;;;;;;; 积分分离阈值 当根据PID位置算法算出的控制量超出限制范围时,控制量实际上只能取边际值U=Umax,或U=Umin,有效偏差法是将相应的这一控制量的偏差值作为有效偏差值计入积分累计而不是将实际的偏差计入积分累计。因为按实际偏差计算出的控制量并没有执行。
如果实际实现的控制量为U=U(上限值或下限值),则有效偏差可以逆推出,即:
=
然后,由该值计算积分项
微分先行PID算法
当控制系统的给定值发生阶跃时,微分作用将导致输出值大幅度变化,这样不利于生产的稳定操作。因此在微分项中不考虑给定值,只对被控量(控制器输入值)进行微分。微分先行PID算法又叫测量值微分PID算法。公式如下:
离散化公式:
参数说明同上
对于纯滞后对象的补偿
控制点采用了Smith预测器,使控制对象与补偿环节一起构成一个简单的惯性环节。
PID参数整定
(1) 比例系数Kp对系统性能的影响

比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。Kp偏大,振荡次数加多,调节时间加长。Kp太大时,系统会趋于不稳定。Kp太小,又会使系统的动作缓慢。Kp可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果Kc的符号选择不当对象状态(pv值)就会离控制目标的状态(sv值)越来越远,如果出现这样的情况Kp的符号就一定要取反。
(2) 积分控制Ti对系统性能的影响

积分作用使系统的稳定性下降,Ti小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度。
(3) 微分控制Td对系统性能的影响

微分作用可以改善动态特性,Td偏大时,超调量较大,调节时间较短。Td偏小时,超调量也较大,调节时间也较长。只有Td合适,才能使超调量较小,减短调节时间。

④ 什么是数字pid位置控制算法和增量型控制算法试比较它们的优缺点

(1)数字PID位置型控制算法:

执行机构需要的是控制量的增量(例如驱动步进电机)时,数字控制器的输出只是控制量的增量,该公式称为增量式PID控制算法。

优点:①误动作时影响小,必要时可用逻辑判断的方法去掉出错数据。

②手动/自动切换时冲击小,便于实现无扰动切换。当计算机故障时,仍能保持原值。

③算式中不需要累加。

缺点:积分截断效应大,有稳态误差;溢出的影响大。

⑤ 什么是“PID算法”

“PID算法”在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。

它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。

PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。

控制点包含三种比较简单的PID控制算法,分别是:增量式算法,位置式算法,微分先行。 这三种PID算法虽然简单,但各有特点,基本上能满足一般控制的大多数要求。

PID增量式算法

离散化公式:

△u(k)= u(k)- u(k-1)

△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]

进一步可以改写成

△u(k)=Ae(k)-Be(k-1)+Ce(k-2)。

⑥ 什么是PID控制算法

PID算法具体分两种:一种是位置式的 ,一种是增量式的。

位置式PID的输出与过去的所有状态有关,计算时要对e(每一次的控制误差)进行累加,这个计算量非常大,而明显没有必要。而且小车的PID控制器的输出并不是绝对数值,而是一个△,代表增多少,带激减多少。换句话说,通过增量PID算法祥乱,每次输出是PWM要增加多少或者减小多少,而不是PWM的实际值。所以明白增量式PID就行了。

PID的增量型公式:

PID=Uk+KP*【E(k)-E(k-1)】+KI*E(k)+KD*【E(k)-2E(k-1)+E(k-2)】

拓展资料:

PID=port ID,在STP(生成树协议)中,若在端口收到的BPDU中BID和path cost相同时,则比较PID来选择阻塞端口。数字电视复用系统名词 PID(Packet Identifier) 在数蠢宴袜字电视复用系统中它的作用好比一份文件的文件名,我们可以称它为“标志码传输包” 。工程控制和数学物理方面 PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。PID由8位端口优先级加端口号组成,端口号占低位,默认端口号优先级128。

热点内容
百度云解压密码忘记 发布:2024-11-26 14:35:36 浏览:863
最差拟合算法 发布:2024-11-26 14:21:17 浏览:739
指令式编程 发布:2024-11-26 14:16:24 浏览:19
阿里云ftp修改密码 发布:2024-11-26 14:12:11 浏览:617
mt4服务器ip 发布:2024-11-26 13:31:56 浏览:867
虚拟机编译得到bin文件 发布:2024-11-26 13:31:00 浏览:419
javaenumofenum 发布:2024-11-26 13:20:09 浏览:922
脚本中ge 发布:2024-11-26 13:14:24 浏览:376
安卓的gps怎么开 发布:2024-11-26 13:14:18 浏览:86
砍人脚本 发布:2024-11-26 13:14:15 浏览:257