当前位置:首页 » 操作系统 » 蜂群算法matlab

蜂群算法matlab

发布时间: 2024-06-16 19:34:58

A. 有没有人有多目标人工蜂群算法的MATLAB代码。发我一份 不胜感激!!

http://emuch.net/bbs/attachment.php?tid=3808850&aid=11221&pay=yes
里面有多个文件
其中之一
%/* ABC algorithm coded using MATLAB language */

%/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. */

%/* Referance Papers*/

%/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/

%/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */

%/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */

%/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */

%/*Copyright ?2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/

%/*Contact:
%Dervis Karaboga ([email protected] )
%Bahriye Basturk Akay ([email protected])
%*/

clear all
close all
clc

%/* Control Parameters of ABC algorithm*/
NP=20; %/* The number of colony size (employed bees+onlooker bees)*/
FoodNumber=NP/2; %/*The number of food sources equals the half of the colony size*/
limit=100; %/*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
maxCycle=2500; %/*The number of cycles for foraging {a stopping criteria}*/

%/* Problem specific variables*/
objfun='Sphere'; %cost function to be optimized
D=100; %/*The number of parameters of the problem to be optimized*/
ub=ones(1,D)*100; %/*lower bounds of the parameters. */
lb=ones(1,D)*(-100);%/*upper bound of the parameters.*/

runtime=1;%/*Algorithm can be run many times in order to see its robustness*/

%Foods [FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
%ObjVal[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
%Fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
%trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
%prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
%solution [D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
%ObjValSol; /*Objective function value of new solution*/
%FitnessSol; /*Fitness value of new solution*/
%neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
%GlobalMin; /*Optimum solution obtained by ABC algorithm*/
%GlobalParams[D]; /*Parameters of the optimum solution*/
%GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/

GlobalMins=zeros(1,runtime);

for r=1:runtime

% /*All food sources are initialized */
%/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */

Range = repmat((ub-lb),[FoodNumber 1]);
Lower = repmat(lb, [FoodNumber 1]);
Foods = rand(FoodNumber,D) .* Range + Lower;

ObjVal=feval(objfun,Foods);
Fitness=calculateFitness(ObjVal);

%reset trial counters
trial=zeros(1,FoodNumber);

%/*The best food source is memorized*/
BestInd=find(ObjVal==min(ObjVal));
BestInd=BestInd(end);
GlobalMin=ObjVal(BestInd);
GlobalParams=Foods(BestInd,:);

iter=1;
while ((iter <= maxCycle)),

%%%%%%%%% EMPLOYED BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%
for i=1:(FoodNumber)

%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;

%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;

%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;

sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);

%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);

% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;

end;

%%%%%%%%%%%%%%%%%%%%%%%% CalculateProbabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%/* A food source is chosen with the probability which is proportioal to its quality*/
%/*Different schemes can be used to calculate the probability values*/
%/*For example prob(i)=fitness(i)/sum(fitness)*/
%/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
%/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/

prob=(0.9.*Fitness./max(Fitness))+0.1;

%%%%%%%%%%%%%%%%%%%%%%%% ONLOOKER BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i=1;
t=0;
while(t<FoodNumber)
if(rand<prob(i))
t=t+1;
%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;

%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;

%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;

sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);

%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);

% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;
end;

i=i+1;
if (i==(FoodNumber)+1)
i=1;
end;
end;

%/*The best food source is memorized*/
ind=find(ObjVal==min(ObjVal));
ind=ind(end);
if (ObjVal(ind)<GlobalMin)
GlobalMin=ObjVal(ind);
GlobalParams=Foods(ind,:);
end;

%%%%%%%%%%%% SCOUT BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%/*determine the food sources whose trial counter exceeds the "limit" value.
%In Basic ABC, only one scout is allowed to occur in each cycle*/

ind=find(trial==max(trial));
ind=ind(end);
if (trial(ind)>limit)
Bas(ind)=0;
sol=(ub-lb).*rand(1,D)+lb;
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
Foods(ind,:)=sol;
Fitness(ind)=FitnessSol;
ObjVal(ind)=ObjValSol;
end;

fprintf('Ýter=%d ObjVal=%g\n',iter,GlobalMin);
iter=iter+1;

end % End of ABC

GlobalMins(r)=GlobalMin;
end; %end of runs

save all

B. 优化算法笔记(八)人工蜂群算法

(以下描述,均不是学术用语,仅供大家快乐的阅读)
工蜂群算法(Artificial Bee Colony Algorithm,ABC)是一种模仿蜜蜂采蜜机理而产生的群智能优化算法。其原理相对复杂,但实现较为简单,在许多领域中都有研究和应用。
人工蜂群算法中,每一个蜜源的位置代表了待求问题的一个可行解。蜂群分为采蜜蜂、观察蜂和侦查蜂。采蜜蜂与蜜源对应,一个采蜜蜂对应一个蜜源。观察蜂则会根据采蜜蜂分享的蜜源相关信息选择跟随哪个采蜜蜂去相应的蜜源,同时该观察蜂将转变为侦查蜂。侦查蜂则自由的搜索新的蜜源。每一个蜜源都有开采的限制次数,当一个蜜源被采蜜多次而达到开采限制次数时,在宽档该蜜源采蜜的采蜜蜂将转变为侦查蜂。每个侦查蜂将随机寻找一个新蜜源进行开采,并转变成为采蜜蜂。

下面是我的实现方式(我的答案):
1. 三种蜜蜂之间可以相互转化。
采蜜蜂->观察蜂:有观察蜂在采蜜过程中发现了比当前采蜜蜂更好的蜜源,则采蜜蜂放弃当前蜜源转而变成观察蜂跟随优质蜜源,同时该观察蜂转变为采蜜蜂。
采蜜蜂->观察蜂:当该采蜜蜂所发现的蜜源被开采完后,它会转变为观察蜂去跟随其他采蜜蜂。
采蜜蜂->侦查蜂:当所有的采蜜蜂发现的蜜源都被开采完后,采蜜蜂将会变为侦查蜂,观察蜂也会变成侦查蜂,因为大家都无蜜可采。
侦查蜂->采蜜蜂、观察蜂:侦查蜂随机搜索蜜源,选择较好的数个蜜源位置的蜜蜂为采蜜蜂,其他蜜蜂为观察蜂。

2.蜜源的数量上限
蜜源的数量上限等于采蜜蜂的数量上限。初始化时所有蜜蜂都是侦查蜂,在这些侦查蜂所搜索到的蜜源中选出数个较优的蜜源,发现这些蜜源的侦查蜂变为采蜜蜂,其他蜜蜂变为观察蜂。直到所有的蜜源都被开采完之前,蜜源的数量不会增加,因为这个过程中没有产生侦查蜂缓配。所有的蜜源都被开采完后,所有的蜜蜂再次全部转化为侦查蜂,新的一轮蜜源搜索开始。也可以在一个蜜源开采完时马上产生一个新的蜜源补充,保证在整个开采过程中蜜源数量恒定不变。

蜜源的开采实际上就是观察蜂跟随采蜜蜂飞向蜜源的过程。得到的下一代的位置公式如下:

表示第i只观察蜂在第t代时随机选择第r只采蜜蜂飞行一段距离,其中R为(-1,1)的随机数。

一只观察蜂在一次迭代过程中只能选择一只采蜜蜂跟随,它需要从众多的采蜜蜂中选择一只来进行跟随。观察蜂选择的策略很简单,随机跟随一只采蜜蜂,该采蜜蜂发现的蜜源越优,则选择它的概率越大。
是不是很像轮盘赌,对,这就是轮盘赌,同时我们也可以稍作修改,比如将勤劳的小蜜蜂改为懒惰的小蜜蜂,小蜜蜂会根据蜜源的优劣和距离以及开采程度等因素综合来选择跟随哪只采蜜蜂(虽然影响不大,但聊胜于无)。
忘记了轮盘赌的小伙伴可以看一下 优化算法笔记(六)遗传算法 。
下面是我的人工蜂群算法流程图

又到了实验环节,参数实验较多,慎哪乱全部给出将会占用太多篇幅,仅将结果进行汇总展示。

实验1:参数如下

上图分别为采蜜蜂上限为10%总数和50%总数的情况,可以看出当采蜜蜂上限为10%总群数时,种群收敛的速度较快,但是到最后有一个点死活不动,这是因为该点作为一个蜜源,但由于适应度值太差,使用轮盘赌被选择到的概率太小从而没有得到更佳的蜜源位置,而因未开采完,采蜜蜂又不能放弃该蜜源。
看了看采蜜蜂上限为50%总群数时的图,发现也有几个点不动的状态,可以看出,这时不动的点的数量明显多于上限为10%总数的图,原因很简单,采蜜蜂太多,“先富”的人太多,而“后富”的人较少,没有带动“后富者”的“先富者”也得不到发展。
看看结果

嗯,感觉结果并没有什么差别,可能由于问题较简单,迭代次数较少,无法体现出采蜜蜂数对于结果的影响,也可能由于蜜源的搜索次数为60较大,总群一共只能对最多20*50/60=16个蜜源进行搜索。我们将最大迭代次数调大至200代再看看结果

当最大迭代次数为200时,人工蜂群算法的结果如上图,我们可以明显的看出,随着采蜜蜂上限的上升,算法结果的精度在不断的下降,这也印证了之前的结果,由于蜜源搜索次数较大(即搜索深度较深)采蜜蜂数量越多(搜索广度越多),结果的精度越低。不过影响也不算太大,下面我们再来看看蜜源最大开采次数对结果的影响。
实验2:参数如下

上图分别是蜜源开采限度为1,20和4000的实验。
当蜜源开采上限为1时,即一个蜜源只能被开采一次,即此时的人工蜂群算法只有侦查蜂随机搜索的过程,没有观察蜂跟随采蜜蜂的过程,可以看出图中的蜜蜂一直在不断的随机出现在新位置不会向某个点收敛。
当蜜源开采上限为20时,我们可以看到此时种群中的蜜蜂都会向一个点飞行。在一段时间内,有数个点一动不动,这些点可能就是采蜜蜂发现的位置不怎么好的蜜源,但是在几次迭代之后,它们仍会被观察蜂开采,从而更新位置,蜜源开采上限越高,它们停顿的代数也会越长。在所有蜜蜂都收敛于一个点之后,我们可以看到仍会不断的出现其他的随机点,这些点是侦查蜂进行随机搜索产生的新的蜜源位置,这些是人工蜂群算法跳出局部最优能力的体现。
当蜜源开采上限为4000时,即不会出现侦查蜂的搜索过程,观察蜂只会开采初始化时出现的蜜源而不会采蜜蜂不会有新的蜜源产生,可以看出在蜂群收敛后没有出现新的蜜源位置。

看看最终结果,我们发现,当蜜源开采上线大于1时的结果提升,但是好像开采上限为5时结果明显好于开采次数上限为其他的结果,而且随着开采次数不断上升,结果在不断的变差。为什么会出现这样的结果呢?原因可能还是因为问题较为简单,在5次开采的限度内,观察蜂已经能找到更好的蜜源进行开采,当问题较为复杂时,我们无法知晓开采发现新蜜源的难度,蜜源开采上限应该取一个相对较大的值。当蜜源开采限度为4000时,即一个蜜源不可能被开采完(开采次数为20(种群数)*200(迭代次数)),搜索的深度有了但是其结果反而不如开采限度为几次几十次来的好,而且这样不会有侦查蜂随机搜索的过程,失去了跳出局部最优的能力。
我们应该如何选择蜜源的最大开采次数限制呢?其实,没有最佳的开采次数限制,当适应度函数较为简单时,开采次数较小时能得到比较好的结果,但是适应度函数较复杂时,经过试验,得出的结果远差于开采次数较大时。当然,前面就说过,适应度函数是一个黑盒模型,我们无法判断问题的难易。那么我们应该选择一个适中的值,个人的选择是种群数的0.5倍到总群数的2倍作为蜜源的最大开采次数,这样可以保证极端情况下,1-2个迭代周期内小蜜蜂们能将一个蜜源开采完。

人工蜂群算法算是一个困扰我比较长时间的算法,几年时间里,我根据文献实现的人工蜂群算法都有数十种,只能说人工蜂群算法的描述太过模糊,或者说太过抽象,研究者怎么实现都说的通。但是通过实现多次之后发现虽然实现细节大不相同,但效果相差不多,所以我们可以认为人工蜂群算法的稳定性比较强,只要实现其主要思想即可,细节对于结果的影响不太大。
对于人工蜂群算法影响最大的因素还是蜜源的开采次数限制,开采次数限制越大,对同一蜜源的开发力度越大,但是分配给其他蜜源的搜索力度会相对减少,也会降低蜂群算法的跳出局部最优能力。可以动态修改蜜源的开采次数限制来实现对算法的改进,不过效果不显着。
其次对于人工蜂群算法影响是三类蜜蜂的搜索行为,我们可以重新设计蜂群的搜索方式来对算法进行改进,比如采蜜蜂在开采蜜源时是随机飞向其他蜜源,而观察蜂向所选的蜜源靠近。这样改进有一定效果但是在高维问题上效果仍不明显。
以下指标纯属个人yy,仅供参考

目录
上一篇 优化算法笔记(七)差分进化算法
下一篇 优化算法笔记(九)杜鹃搜索算法

优化算法matlab实现(八)人工蜂群算法matlab实现

C. 优化算法笔记(二)优化算法的分类

(以下描述,均不是学术用语,仅供大家快乐的阅读)

在分类之前,我们先列举一下常见的优化算法(不然我们拿什么分类呢?)。
1遗传算法Genetic algorithm
2粒子群优化算法Particle Swarm Optimization
3差分进化算法Differential Evolution
4人工蜂群算法Artificial Bee Colony
5蚁群算法Ant Colony Optimization
6人工鱼群算法Artificial Fish Swarm Algorithm
7杜鹃搜索算法Cuckoo Search
8萤火虫算法Firefly Algorithm
9灰狼算法Grey Wolf Optimizer
10鲸鱼算法Whale Optimization Algorithm
11群搜索算法Group search optimizer
12混合蛙跳算法Shuffled Frog Leaping Algorithm
13烟花算法fireworks algorithm
14菌群优化算法Bacterial Foraging Optimization
以上优化算法是我所接触过的算法,没接触过的算法不能随便下结论,知之为知之,不知为不知。其实到目前为止优化算法可能已经有几百种了,我们不可能也不需要全面的了解所有的算法,而且优化算法之间也有较大的共性,深入研究几个之后再看其他优化算法上手速度会灰常的快。
优化算法从提出到现在不过50-60年(遗传算法1975年提出),虽种类繁多但大多较为相似,不过这也很正常,比较香蕉和人的基因相似度也有50%-60%。当然算法之间的相似度要比香蕉和人的相似度更大,毕竟人家都是优化算法,有着相同的目标,只是实现方式不同。就像条条大路通罗马,我们可以走去,可以坐汽车去,可以坐火车去,也可以坐飞机去,不管使用何种方式,我们都在去往罗马的路上,也不会说坐飞机去要比走去更好,交通工具只是一个工具,最终的方案还是要看我们的选择。

上面列举了一些常见的算法,即使你一个都没见过也没关系,后面会对它们进行详细的介绍,但是对后面的分类可能会有些许影响,不过问题不大,就先当总结看了。
再对优化算法分类之前,先介绍一下算法的模型,在笔记(一)中绘制了优化算法的流程,不过那是个较为简单的模型,此处的模型会更加复杂。上面说了优化算法有较大的相似性,这些相似性主要体现在算法的运行流程中。
优化算法的求解过程可以看做是一个群体的生存过程。

有一群原始人,他们要在野外中寻找食物,一个原始人是这个群体中的最小单元,他们的最终目标是寻找这个环境中最容易获取食物的位置,即最易存活下来的位置。每个原始人都去独自寻找食物,他们每个人每天获取食物的策略只有采集果实、制作陷阱或者守株待兔,即在一天之中他们不会改变他们的位置。在下一天他们会根据自己的策略变更自己的位置。到了某一天他们又聚在了一起,选择了他们到过的最容易获取食物的位置定居。
一群原始人=优化算法中的种群、群体;
一个原始人=优化算法中的个体;
一个原始人的位置=优化算法中个体的位置、基因等属性;
原始人变更位置=优化算法中总群的更新操作;
该位置获取食物的难易程度=优化算法中的适应度函数;
一天=优化算法中的一个迭代;
这群原始人最终的定居位置=优化算法所得的解。
优化算法的流程图如下:

对优化算法分类得有个标准,按照不同的标准分类也会得到不一样的结果。首先说一下我所使用的分类标准(动态更新,有了新的感悟再加):

按由来分类比较好理解,就是该算法受何种现象启发而发明,本质是对现象分类。

可以看出算法根据由来可以大致分为有人类的理论创造而来,向生物学习而来,受物理现象启发。其中向生物学习而来的算法最多,其他类别由于举例有偏差,不是很准确,而且物理现象也经过人类总结,有些与人类现象相交叉,但仍将其独立出来。
类别分好了,那么为什么要这么分类呢?

当然是因为要凑字数啦,啊呸,当然是为了更好的理解学习这些算法的原理及特点。
向动物生存学习而来的算法一定是一种行之有效的方法,能够保证算法的效率和准确性,因为,如果使用该策略的动物无法存活到我们可以对其进行研究,我们也无法得知其生存策略。(而这也是一种幸存者偏差,我们只能看到行之有效的策略,但并不是我们没看到的策略都是垃圾,毕竟也发生过小行星撞地球这种小概率毁灭性事件。讲个冷笑话开cou心一shu下:一只小恐龙对他的小伙伴说,好开心,我最喜欢的那颗星星越来越亮了(完)。)但是由于生物的局限性,人们所创造出的算法也会有局限性:我们所熟知的生物都生存在三维空间,在这些环境中,影响生物生存的条件比较有限,反应到算法中就是这些算法在解决较低维度的问题时效果很好,当遇到超高维(维度>500)问题时,结果可能不容乐观,没做过实验,我也不敢乱说。

按更新过程分类相对复杂一点,主要是根据优化算法流程中更新位置操作的方式来进行分类。更新位置的操作按我的理解可大致分为两类:1.跟随最优解;2.不跟随最优解。
还是上面原始人的例子,每天他有一次去往其他位置狩猎的机会,他们采用何种方式来决定今天自己应该去哪里呢?
如果他们的策略是“跟随最优解”,那么他们选取位置的方式就是按一定的策略向群体已知的最佳狩猎位置(历史最佳)或者是当前群体中的最佳狩猎位置(今天最佳)靠近,至于是直线跑过去还是蛇皮走位绕过去,这个要看他们群体的策略。当然,他们的目的不是在最佳狩猎位置集合,他们的目的是在过去的途中看是否能发现更加好的狩猎位置,去往已经到过的狩猎地点再次狩猎是没有意义的,因为每个位置获取食物的难易程度是固定的。有了目标,大家都会朝着目标前进,总有一日,大家会在谋个位置附近相聚,相聚虽好但不利于后续的觅食容易陷入局部最优。
什么是局部最优呢?假设在当前环境中有一“桃花源”,拥有上帝视角的我们知道这个地方就是最适合原始人们生存的,但是此地入口隐蔽“山有小口,仿佛若有光”、“初极狭,才通人。”,是一个难以发现的地方。如果没有任何一个原始人到达了这里,大家向着已知的最优位置靠近时,也难以发现这个“桃源之地”,而当大家越聚越拢之后,“桃源”被发现的可能性越来越低。虽然原始人们得到了他们的解,但这并不是我们所求的“桃源”,他们聚集之后失去了寻求“桃源”的可能,这群原始人便陷入了局部最优。

如果他们的策略是“不跟随最优解”,那么他们的策略是什么呢?我也不知道,这个应该他们自己决定。毕竟“是什么”比“不是什么”的范围要小的多。总之不跟随最优解时,算法会有自己特定的步骤来更新个体的位置,有可能是随机在自己附近找,也有可能是随机向别人学习。不跟随最优解时,原始人们应该不会快速聚集到某一处,这样一来他们的选择更具多样性。
按照更新过程对上面的算法分类结果如下

可以看出上面不跟随最优解的算法只有遗传算法和差分进化算法,他们的更新策略是与进化和基因的重组有关。因此这些不跟随最优解的算法,他们大多依据进化理论更新位置(基因)我把他们叫做进化算法,而那些跟随群体最优解的算法,他们则大多依赖群体的配合协作,我把这些算法叫做群智能算法。

目前我只总结了这两种,分类方法,如果你有更加优秀的分类方法,我们可以交流一下:

目录
上一篇 优化算法笔记(一)优化算法的介绍
下一篇 优化算法笔记(三)粒子群算法(1)

D. 人工蜂群算法的蜜蜂采蜜机理

蜜蜂是一种群居昆虫,虽然单个昆虫的行为极其简单,但是由单个简单的个体所组成的群体却表现出极其复杂的行为。真实的蜜蜂种群能够在任何环境下,以极高的效率从食物源(花朵)中采集花蜜;同时,它们能适应环境的改变。
蜂群产生群体智慧的最小搜索模型包含基本的三个组成要素:食物源、被雇佣的蜜蜂(employed foragers)和未被雇佣的蜜蜂(unemployed foragers);两种最为基本的行为模型:为食物源招募(recruit)蜜蜂和放弃(abandon)某个食物源。
(1)食物源:食物源的价值由多方面的因素决定,如:它离蜂巢的远近,包含花蜜的丰富程度和获得花蜜的难易程度。使用单一的参数,食物源的“收益率”(profitability),来代表以上各个因素。
(2)被雇用的蜜蜂:也称引领蜂(Leader),其与所采集的食物源一一对应。引领蜂储存有某一个食物源的相关信息(相对于蜂巢的距离、方向、食物源的丰富程度等)并且将这些信息以一定的概率与其他蜜蜂分享。
(3)未被雇用的蜜蜂:其主要任务是寻找和开采食物源。有两种未被雇用的蜜蜂:侦查蜂(Scouter)和跟随蜂(Follower)。侦察蜂搜索蜂巢附近的新食物源;跟随蜂等在蜂巢里面并通过与引领蜂分享相关信息找到食物源。一般情况下,侦察蜂的平均数目是蜂群的5%-20%。
在群体智慧的形成过程中,蜜蜂间交换信息是最为重要的一环。舞蹈区是蜂巢中最为重要的信息交换地。蜜蜂的舞蹈叫做摇摆舞。食物源的信息在舞蹈区通过摇摆舞的形式与其他蜜蜂共享,引领蜂通过摇摆舞的持续时间等来表现食物源的收益率,故跟随蜂可以观察到大量的舞蹈并依据收益率来选择到哪个食物源采蜜。收益率与食物源被选择的可能性成正比。因而,蜜蜂被招募到某一个食物源的概率与食物源的收益率成正比。
初始时刻,蜜蜂以侦察蜂的身份搜索。其搜索可以由系统提供的先验知识决定,也可以完全随机。经过一轮侦查后,若蜜蜂找到食物源,蜜蜂利用它本身的存储能力记录位置信息并开始采蜜。此时,蜜蜂将成为“被雇用者”。蜜蜂在食物源采蜜后回到蜂巢卸下蜂蜜然后将有如下选择:
(1)放弃食物源而成为非雇佣蜂。
(2)跳摇摆舞为所对应的食物源招募更多的蜜蜂,然后回到食物源采蜜。
(3)继续在同一个食物源采蜜而不进行招募。
对于非雇佣蜂有如下选择:
(1)转变成为侦察蜂并搜索蜂巢附近的食物源。其搜索可以由先验知识决定,也可以完全随机。
(2)在观察完摇摆舞后被雇用成为跟随蜂,开始搜索对应食物源邻域并采蜜。

E. java人工蜂群算法求解TSP问题

一、人工蜂群算法的介绍

人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。

二、人工蜂群算法的原理

1、原理

标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。

假设问题的解空间是

代码:

[cpp]view plain

  • #include<iostream>

  • #include<time.h>

  • #include<stdlib.h>

  • #include<cmath>

  • #include<fstream>

  • #include<iomanip>

  • usingnamespacestd;

  • constintNP=40;//种群的规模,采蜜蜂+观察蜂

  • constintFoodNumber=NP/2;//食物的数量,为采蜜蜂的数量

  • constintlimit=20;//限度,超过这个限度没有更新采蜜蜂变成侦查蜂

  • constintmaxCycle=10000;//停止条件

  • /*****函数的特定参数*****/

  • constintD=2;//函数的参数个数

  • constdoublelb=-100;//函数的下界

  • constdoubleub=100;//函数的上界

  • doubleresult[maxCycle]={0};

  • /*****种群的定义****/

  • structBeeGroup

  • {

  • doublecode[D];//函数的维数

  • doubletrueFit;//记录真实的最小值

  • doublefitness;

  • doublerfitness;//相对适应值比例

  • inttrail;//表示实验的次数,用于与limit作比较

  • }Bee[FoodNumber];

  • BeeGroupNectarSource[FoodNumber];//蜜源,注意:一切的修改都是针对蜜源而言的

  • BeeGroupEmployedBee[FoodNumber];//采蜜蜂

  • BeeGroupOnLooker[FoodNumber];//观察蜂

  • BeeGroupBestSource;//记录最好蜜源

  • /*****函数的声明*****/

  • doublerandom(double,double);//产生区间上的随机数

  • voidinitilize();//初始化参数

  • doublecalculationTruefit(BeeGroup);//计算真实的函数值

  • doublecalculationFitness(double);//计算适应值

  • voidCalculateProbabilities();//计算轮盘赌的概率

  • voidevalueSource();//评价蜜源

  • voidsendEmployedBees();

  • voidsendOnlookerBees();

  • voidsendScoutBees();

  • voidMemorizeBestSource();

  • /*******主函数*******/

  • intmain()

  • {

  • ofstreamoutput;

  • output.open("dataABC.txt");

  • srand((unsigned)time(NULL));

  • initilize();//初始化

  • MemorizeBestSource();//保存最好的蜜源

  • //主要的循环

  • intgen=0;

  • while(gen<maxCycle)

  • {

  • sendEmployedBees();

  • CalculateProbabilities();

  • sendOnlookerBees();

  • MemorizeBestSource();

  • sendScoutBees();

  • MemorizeBestSource();

  • output<<setprecision(30)<<BestSource.trueFit<<endl;

  • gen++;

  • }

  • output.close();

  • cout<<"运行结束!!"<<endl;

  • return0;

  • }

  • /*****函数的实现****/

  • doublerandom(doublestart,doubleend)//随机产生区间内的随机数

  • {

  • returnstart+(end-start)*rand()/(RAND_MAX+1.0);

  • }

  • voidinitilize()//初始化参数

  • {

  • inti,j;

  • for(i=0;i<FoodNumber;i++)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=random(lb,ub);

  • EmployedBee[i].code[j]=NectarSource[i].code[j];

  • OnLooker[i].code[j]=NectarSource[i].code[j];

  • BestSource.code[j]=NectarSource[0].code[j];

  • }

  • /****蜜源的初始化*****/

  • NectarSource[i].trueFit=calculationTruefit(NectarSource[i]);

  • NectarSource[i].fitness=calculationFitness(NectarSource[i].trueFit);

  • NectarSource[i].rfitness=0;

  • NectarSource[i].trail=0;

  • /****采蜜蜂的初始化*****/

  • EmployedBee[i].trueFit=NectarSource[i].trueFit;

  • EmployedBee[i].fitness=NectarSource[i].fitness;

  • EmployedBee[i].rfitness=NectarSource[i].rfitness;

  • EmployedBee[i].trail=NectarSource[i].trail;

  • /****观察蜂的初始化****/

  • OnLooker[i].trueFit=NectarSource[i].trueFit;

  • OnLooker[i].fitness=NectarSource[i].fitness;

  • OnLooker[i].rfitness=NectarSource[i].rfitness;

  • OnLooker[i].trail=NectarSource[i].trail;

  • }

  • /*****最优蜜源的初始化*****/

  • BestSource.trueFit=NectarSource[0].trueFit;

  • BestSource.fitness=NectarSource[0].fitness;

  • BestSource.rfitness=NectarSource[0].rfitness;

  • BestSource.trail=NectarSource[0].trail;

  • }

  • doublecalculationTruefit(BeeGroupbee)//计算真实的函数值

  • {

  • doubletruefit=0;

  • /******测试函数1******/

  • truefit=0.5+(sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))-0.5)

  • /((1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*(1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1])));

  • returntruefit;

  • }

  • doublecalculationFitness(doubletruefit)//计算适应值

  • {

  • doublefitnessResult=0;

  • if(truefit>=0)

  • {

  • fitnessResult=1/(truefit+1);

  • }else

  • {

  • fitnessResult=1+abs(truefit);

  • }

  • returnfitnessResult;

  • }

  • voidsendEmployedBees()//修改采蜜蜂的函数

  • {

  • inti,j,k;

  • intparam2change;//需要改变的维数

  • doubleRij;//[-1,1]之间的随机数

  • for(i=0;i<FoodNumber;i++)

  • {

  • param2change=(int)random(0,D);//随机选取需要改变的维数

  • /******选取不等于i的k********/

  • while(1)

  • {

  • k=(int)random(0,FoodNumber);

  • if(k!=i)

  • {

  • break;

  • }

  • }

  • for(j=0;j<D;j++)

  • {

  • EmployedBee[i].code[j]=NectarSource[i].code[j];

  • }

  • /*******采蜜蜂去更新信息*******/

  • Rij=random(-1,1);

  • EmployedBee[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);

  • /*******判断是否越界********/

  • if(EmployedBee[i].code[param2change]>ub)

  • {

  • EmployedBee[i].code[param2change]=ub;

  • }

  • if(EmployedBee[i].code[param2change]<lb)

  • {

  • EmployedBee[i].code[param2change]=lb;

  • }

  • EmployedBee[i].trueFit=calculationTruefit(EmployedBee[i]);

  • EmployedBee[i].fitness=calculationFitness(EmployedBee[i].trueFit);

  • /******贪婪选择策略*******/

  • if(EmployedBee[i].trueFit<NectarSource[i].trueFit)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=EmployedBee[i].code[j];

  • }

  • NectarSource[i].trail=0;

  • NectarSource[i].trueFit=EmployedBee[i].trueFit;

  • NectarSource[i].fitness=EmployedBee[i].fitness;

  • }else

  • {

  • NectarSource[i].trail++;

  • }

  • }

  • }

  • voidCalculateProbabilities()//计算轮盘赌的选择概率

  • {

  • inti;

  • doublemaxfit;

  • maxfit=NectarSource[0].fitness;

  • for(i=1;i<FoodNumber;i++)

  • {

  • if(NectarSource[i].fitness>maxfit)

  • maxfit=NectarSource[i].fitness;

  • }

  • for(i=0;i<FoodNumber;i++)

  • {

  • NectarSource[i].rfitness=(0.9*(NectarSource[i].fitness/maxfit))+0.1;

  • }

  • }

  • voidsendOnlookerBees()//采蜜蜂与观察蜂交流信息,观察蜂更改信息

  • {

  • inti,j,t,k;

  • doubleR_choosed;//被选中的概率

  • intparam2change;//需要被改变的维数

  • doubleRij;//[-1,1]之间的随机数

  • i=0;

  • t=0;

  • while(t<FoodNumber)

  • {

  • R_choosed=random(0,1);

  • if(R_choosed<NectarSource[i].rfitness)//根据被选择的概率选择

  • {

  • t++;

  • param2change=(int)random(0,D);

  • /******选取不等于i的k********/

  • while(1)

  • {

  • k=(int)random(0,FoodNumber);

  • if(k!=i)

  • {

  • break;

  • }

  • }

  • for(j=0;j<D;j++)

  • {

  • OnLooker[i].code[j]=NectarSource[i].code[j];

  • }

  • /****更新******/

  • Rij=random(-1,1);

  • OnLooker[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);

  • /*******判断是否越界*******/

  • if(OnLooker[i].code[param2change]<lb)

  • {

  • OnLooker[i].code[param2change]=lb;

  • }

  • if(OnLooker[i].code[param2change]>ub)

  • {

  • OnLooker[i].code[param2change]=ub;

  • }

  • OnLooker[i].trueFit=calculationTruefit(OnLooker[i]);

  • OnLooker[i].fitness=calculationFitness(OnLooker[i].trueFit);

  • /****贪婪选择策略******/

  • if(OnLooker[i].trueFit<NectarSource[i].trueFit)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=OnLooker[i].code[j];

  • }

  • NectarSource[i].trail=0;

  • NectarSource[i].trueFit=OnLooker[i].trueFit;

  • NectarSource[i].fitness=OnLooker[i].fitness;

  • }else

  • {

  • NectarSource[i].trail++;

  • }

  • }

  • i++;

  • if(i==FoodNumber)

  • {

  • i=0;

  • }

  • }

  • }

  • 热点内容
    中国银行查询密码是什么 发布:2025-01-16 02:33:20 浏览:791
    坚果pro录音文件夹 发布:2025-01-16 02:31:46 浏览:938
    支付宝的登录密码忘记了如何改 发布:2025-01-16 02:30:30 浏览:221
    解压作业泥 发布:2025-01-16 02:28:02 浏览:806
    我的世界rpg服务器空岛 发布:2025-01-16 02:26:49 浏览:90
    ps脚本函数 发布:2025-01-16 02:15:28 浏览:480
    android显示行数据 发布:2025-01-16 02:07:40 浏览:963
    压缩皇冠 发布:2025-01-16 01:51:27 浏览:274
    全键盘编程键盘 发布:2025-01-16 01:38:59 浏览:422
    尾货棉服直播间脚本 发布:2025-01-16 01:21:45 浏览:228