当前位置:首页 » 操作系统 » 退火算法matlab

退火算法matlab

发布时间: 2024-05-13 04:39:17

㈠ 遗传算法、数值算法、爬山算法、模拟退火 各自的优缺点

遗传算法:其优点是能很好地处理约束,跳出局部最优,最终得到全局最优解。缺点是收敛速度慢,局部搜索能力弱,运行时间长,容易受到参数的影响。

模拟退火:具有局部搜索能力强、运行时间短的优点。缺点是全局搜索能力差,容易受到参数的影响。

爬山算法:显然爬山算法简单、效率高,但在处理多约束大规模问题时,往往不能得到较好的解决方案。

数值算法:这个数值算法的含义太宽泛了,指的是哪种数值算法,阵列算法与爬山算法一样,各有优缺点。

(1)退火算法matlab扩展阅读:

注意事项:

遗传算法的机制比较复杂,在Matlab中已经用工具箱中的命令进行了打包,通过调用可以非常方便的使用遗传算法。

函数GA:[x,Fval,reason]=GA(@fitnessfun,Nvars,options)x为最优解,Fval为最优值,@Fitnessness为目标函数,Nvars为自变量个数,options为其他属性设置。系统的默认值是最小值,所以函数文档中应该加上一个减号。

要设置选项,您需要以下函数:options=GaOptimset('PropertyName1','PropertyValue1','PropertyName2','PropertyName3','PropertyValue3'…)通过该函数,可以确定一些遗传算法的参数。

㈡ 请问一下遗传算法,模拟退火算法和遗传模拟退火算法的区别,最好能有根据同一个数学问题的matalb程序源代

遗传算法是种群择优,模拟退火是择优降火,里头的差别不大,就是生成新链,然后计算适应度什么的。这两种优化算法都能解决TSP问题,源代码没有,不过matlab有工具箱可以实现吧,你再找找。

㈢ matlab全局优化与局部优化

在实际的工作和生活过程中,优化问题无处不在,比如资源如何分配效益最高,拟合问题,最小最大值问题等等。优化问题一般分为尺核局部最优和全局最优,局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。

matlab中的提供的传统优化工具箱(Optimization Tool),能实现局部最优,但要得全局最优,则要用全局最优化算法(Global Optimization Tool),主要包括:
GlobalSearch 全局搜索和 MultiStart 多起点方法产生若干起始点,然后它们用局部求解器去找到起始点吸引盆处的最优点。

ga 遗传算法用一组起始点(称为种群),通过迭代从种群中产生更好的点,只要初始种群覆盖几个盆,GA就能检查几个盆。

simulannealbnd 模拟退火完成一个随机搜索,通常,模拟退火算法接受一个点,只要这个点比前面那个好,它也偶而接受一个比较糟的点,目的是转向不同的盆。

patternsearch 模式搜索算法在接受一个点之前要看看其附近的一组点。假如附近的某些点属于不同的盆,模式搜索算法本质上时同时搜索若干个盆。

下面我就一些具体例子,来说明各种优化方法:

可以看出,初值x0不同,得到的结果侍孙截然不同,这说明这种求解器,能寻找局部最优,但不一定是全局最优,在起点为8时,取得全局最优。
我们换一种求解器:fminbound,这种求解器不需要给点初值。

因此全局最优的方法能够获取全局最优。

结果:最小二乘拟合结果误差较大

可以陵谈掘看出全局优化结果较好,误差较小。
这种算法的运行时间:Elapsed time is 6.139324 seconds.
使用并行计算的方式解决

结果:14 out of 100 local solver runs converged with a positive local solver exit flag.
Elapsed time is 4.358762 seconds.Sending a stop signal to all the labs ... stopped.可以看出,运行时间减少,提高了效率。

这种方法只能寻找局部最优。
现在用全局优化算法:

㈣ 求一个模拟退火算法优化BP神经网络的一个程序(MATLAB)

“模拟退火”算法是源于对热力学中退火过程的模拟,在某一给定初温下,通过缓慢下降温度参数,使算法能够在多项式时间内给出一个近似最优解。退火与冶金学上的‘退火’相似,而与冶金学的淬火有很大区别,前者是温度缓慢下降,后者是温度迅速下降。

“模拟退火”的原理也和金属退火的原理近似:我们将热力学的理论套用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。


这个算法已经很多人做过,可以优化BP神经网络初始权值。附件是解决TSP问题的matlab代码,可供参考。看懂了就可以自己编程与bp代码结合。

热点内容
奇迹传奇日服为什么没有服务器 发布:2025-01-16 16:22:08 浏览:858
android浏览器控件 发布:2025-01-16 16:22:05 浏览:155
数据库10061 发布:2025-01-16 16:11:47 浏览:701
电脑网络ip地址怎么配置 发布:2025-01-16 16:03:48 浏览:330
我的世界安卓网易版怎么装材质包 发布:2025-01-16 16:00:55 浏览:255
404页面源码 发布:2025-01-16 15:58:48 浏览:888
手机建行密码忘记了怎么办 发布:2025-01-16 15:45:38 浏览:225
易语言视频播放源码 发布:2025-01-16 15:39:35 浏览:344
肇观算法 发布:2025-01-16 15:38:39 浏览:611
管家婆找不到加密狗 发布:2025-01-16 15:10:28 浏览:308