java国密算法
A. 国密算法
国密即国家密码局认定的国产密码算法。主要有SM1,SM2,SM3,SM4。密钥长度和分组长度均为128位。
SM1 为对称加密。其加密强度与AES相当。该算法不公开,调用该算法时,需要通过加密芯片的接口进行调用。
SM2为非对称加密,基于ECC。该算法已公开。由于该算法基于ECC,故其签名速度与秘钥生成速度都快于RSA。ECC 256位(SM2采用的就是ECC 256位的一种)安全强度比RSA 2048位高,但运算速度快于RSA。
国家密码管理局公布的公钥算法,其加密强度为256位
SM3 消息摘要。可以用MD5作为对比理解。该算法已公开。校验结果为256位。
SM4 无线局域网标准的分组数据算法。对称加密,密钥长度和分组长度均为128位。
由于SM1、SM4加解密的分组大小为128bit,故对消息进行加解密时,若消息长度过长,需要进行分组,要消息长度不足,则要进行填充。
分组密码算法(DES和SM4)、将明文数据按固定长度进行分组,然后在同一密钥控制下逐组进行加密,
公钥密码算法(RSA和SM2)、公开加密算法本身和公开公钥,保存私钥
摘要算法(SM3 md5) 这个都比较熟悉,用于数字签名,消息认证,数据完整性,但是sm3安全度比md5高
总得来说国密算法的安全度比较高,2010年12月推出,也是国家安全战略,现在银行都要要求国际算法改造,要把国际算法都给去掉
C 语言实现
https://github.com/guan/GmSSL/
Go 语言
https://github.com/tjfoc/gmsm
https://github.com/ZZMarquis/gm
java 语言
https://github.com/PopezLotado/SM2Java
Go语言实现,调用 gmsm
B. 国密算法是什么
国密即国家密码局认定的国产密码算法。
例如:在门禁应用中,采用SM1算法进行身份鉴别和数据加密通讯,实现卡片合法性的验证,保证身份识别的真实性。 安全是关系国家、城市信息、行业用户、百姓利益的关键问题。
国家密码管理局针对现有重要门禁系统建设和升级改造应用也提出指导意见,加强芯片、卡片、系统的标准化建设。国密门禁系统的升级的案例也逐渐增多,基于自主国产知识产权的CPU卡、CPU卡读写设备及密钥管理系统广泛受到关注。
一些厂商在2009年推出CPU卡安全门禁系列产品,在2010年北京安博会上,向业界展示出系列CPU卡门禁系统、系列安全门禁读卡器以及基于CPU卡技术的一卡通系统等主流产品和系统。
这些厂商是全国推广的国密门禁产品的先驱者,使系列CPU卡门禁系统广泛应用于政府、监狱、司法、军工企业和大型公共智能建筑等高安全领域。
C. 求ECDSA的Java代码
【方案1】
package ECDSA;
import com.sun.org.apache.xerces.internal.impl.dv.util.HexBin;
import java.security.*;
import java.security.interfaces.ECPrivateKey;
import java.security.interfaces.ECPublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
public class Ecdsa {
private static String src = "hello berber" ;
public static void main(String []args){
jdkECDSA();
}
public static void jdkECDSA(){
// 1.初始化密钥
try{
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("EC");
keyPairGenerator.initialize(256);
KeyPair keyPair = keyPairGenerator.generateKeyPair() ;
ECPublicKey ecPublicKey = (ECPublicKey)keyPair.getPublic() ;
ECPrivateKey ecPrivateKey = (ECPrivateKey)keyPair.getPrivate() ;
// 执行签名
PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(ecPrivateKey.getEncoded());
KeyFactory keyFactory = KeyFactory.getInstance("EC") ;
PrivateKey privateKey = keyFactory.generatePrivate(pkcs8EncodedKeySpec) ;
Signature signature = Signature.getInstance("SHA1withECDSA");
signature.initSign(privateKey);
signature.update(src.getBytes());
byte []arr = signature.sign();
System.out.println("jdk ecdsa sign :"+ HexBin.encode(arr));
// 验证签名
X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(ecPublicKey.getEncoded());
keyFactory = KeyFactory.getInstance("EC");
PublicKey publicKey = keyFactory.generatePublic(x509EncodedKeySpec);
signature = Signature.getInstance("SHA1withECDSA");
signature.initVerify(publicKey);
signature.update(src.getBytes());
boolean bool = signature.verify(arr);
System.out.println("jdk ecdsa verify:"+bool);
}catch(Exception e){
}
}
}
Java数字签名——ECDSA算法
【方案2】
public class MyTest {
/**
* @param args
*/
public static void main(String[] args) {
new MyTest().getSign();
}
void getSign() {
// Get the instance of the Key Generator with "EC" algorithm
try {
KeyPairGenerator g = KeyPairGenerator.getInstance("EC");
ECGenParameterSpec kpgparams = new ECGenParameterSpec("secp256r1");
g.initialize(kpgparams);
KeyPair pair = g.generateKeyPair();
// Instance of signature class with SHA256withECDSA algorithm
Signature ecdsaSign = Signature.getInstance("SHA256withECDSA");
ecdsaSign.initSign(pair.getPrivate());
System.out.println("Private Keys is::" + pair.getPrivate());
System.out.println("Public Keys is::" + pair.getPublic());
String msg = "text ecdsa with sha256";//getSHA256(msg)
ecdsaSign.update((msg + pair.getPrivate().toString())
.getBytes("UTF-8"));
byte[] signature = ecdsaSign.sign();
System.out.println("Signature is::"
+ new BigInteger(1, signature).toString(16));
// Validation
ecdsaSign.initVerify(pair.getPublic());
ecdsaSign.update(signature);
if (ecdsaSign.verify(signature))
System.out.println("valid");
else
System.out.println("invalid!!!!");
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}
}}
java – 使用secp256r1曲线和SHA256算法生
怎么验证生成的Ecdsa签名是正确的呢,可以看下这篇文章:RSA,ECC,Ecdsa,国密SM2的签名,验签,加密
D. 国密算法是什么呢
国密算法是国家密码局制定标准的一系列算法。其中包括了对称加密算法,椭圆曲线非对称加密算法,杂凑算法。具体包括SM1、SM2、SM3、SMS4等,其中:
SM1:对称加密算法,加密强度为128位,采用硬件实现。
SM2:国家密码管理局公布的公钥算法,其加密强度为256位。其它几个重要的商用密码算法包括:
SM3:密码杂凑算法,杂凑值长度为32字节,和SM2算法同期公布,参见《国家密码管理局公告(第 22 号)》。
SMS4:对称加密算法,随WAPI标准一起公布,可使用软件实现,加密强度为128位。
案例
例如:在门禁应用中,采用SM1算法进行身份鉴别和数据加密通讯,实现卡片合法性的验证,保证身份识别的真实性。安全是关系国家、城市信息、行业用户、百姓利益的关键问题。国家密码管理局针对现有重要门禁系统建设和升级改造应用也提出指导意见,加强芯片、卡片、系统的标准化建设。
E. 国密算法是什么是一种算法还是一类算法若为一类算法,都包含什么
国密算法,国家密码局认定的国产密码算法,即商用密码。
国密算法是国家密码局制定标准的一系列算法。其中包括了对称加密算法,椭圆曲线非对称加密算法,杂凑算法。具体包括SM1,SM2,SM3等。
SM1,对称加密算法,加密强度为128位,采用硬件实现。
SM2,国家密码管理局公布的公钥算法,其加密强度为256位。
SM3,密码杂凑算法,杂凑值长度为32字节。
(5)java国密算法扩展阅读
商用密码的应用领域十分广泛,主要用于对不涉及国家秘密内容但又具有敏感性的内部信息、行政事务信息、经济信息等进行加密保护。比如:商用密码可用于企业门禁管理、企业内部的各类敏感信息的传输加密、存储加密,防止非法第三方获取信息内容;也可用于各种安全认证、网上银行、数字签名等。
例如:在门禁应用中,采用SM1算法进行身份鉴别和数据加密通讯,实现卡片合法性的验证,保证身份识别的真实性。 安全是关系国家、城市信息、行业用户、百姓利益的关键问题。
国家密码管理局针对现有重要门禁系统建设和升级改造应用也提出指导意见,加强芯片、卡片、系统的标准化建设。国密门禁系统的升级的案例也逐渐增多,基于自主国产知识产权的CPU卡、CPU卡读写设备及密钥管理系统广泛受到关注。