硬件的算法
1. 如何用fpga实现算法的硬件加速
首先,利用传统的软件技巧来优化算法,然后将其转向定制指令以加速算法。我们将讨论不同实现方法的性能比较和折衷。
CRC算法可用来校验数据在传输过程中是否被破坏。这些算法很流行,因为它们具有很高的检错率,而且不会对数据吞吐量造成太大影响,因为CRC校验位被添加进数据信息中。但是,CRC算法比一些简单的校验和算法有更大的计算量要求。尽管如此,检错率的提高使得这种算法值得去实施。
一般说来,发送端对要被发送的消息执行CRC算法,并将CRC结果添加进该消息中。消息的接收端对包括CRC结果在内的消息执行同样的CRC操作。如果接收端的结果与发送端的不同,这说明数据被破坏了。
CRC算法是一种密集的数学运算,涉及到二元模数除法(molo-2 division),即数据消息被16或32位多项式(取决于所用CRC标准)除所得的余数。这种操作一般通过异或和移位的迭代过程来实现,当采用16位多项式时,这相当于每数据字节要执行数百条指令。如果发送数百个字节,计算量就会高达数万条指令。因此,任何优化都会大幅提高吞吐量。
代码列表1中的CRC函数有两个自变量(消息指针和消息中的字节数),它可返回所计算的CRC值(余数)。尽管该函数的自变量是一些字节,但计算要逐位来执行。该算法并不高效,因为所有操作(与、移位、异或和循环控制)都必须逐位地执行。
列表1:逐位执行的CRC算法C代码。
/*
* The width of the CRC calculation and result.
* Modify the typedef for a 16 or 32-bit CRC standard.
*/
typedef unsigned char crc;
#define WIDTH (8 * sizeof(crc))
#define TOPBIT (1 << (WIDTH - 1))
crc crcSlow(unsigned char const message[], int nBytes)
{
crc remainder = 0;
/*
* Perform molo-2 division, a byte at a time.
*/
for (int byte = 0; byte < nBytes; ++byte)
{
/*
* Bring the next byte into the remainder.
*/
remainder ^= (message[byte] << (WIDTH - 8));
/*
* Perform molo-2 division, a bit at a time.
*/
for (unsigned char bit = 8; bit > 0; "bit)
{
/*
* Try to divide the current data bit.
*/
if (remainder & TOPBIT)
{
remainder = (remainder << 1) ^ POLYNOMIAL;
}
else
{
remainder = (remainder << 1);
}
}
}
/*
* The final remainder is the CRC result.
*/
return (remainder);
}
1.传统的软件优化
图3:带CRC外围电路和DMA的系统模块示意图。
让我们看一下如何利用传统的软件技巧来优化CRC算法。因为CRC操作中的一个操作数,即多项式(除数)是常数,字节宽CRC操作的所有可能结果都可以预先计算并存储在一个查找表中。这样,通过一个读查找表动作就可让操作按逐个字节执行下去。
采用这一算法时,需要将这些预先计算好的值存储在存储器中。选择ROM或RAM都可以,只要在启动CRC计算之前将存储器初始化就行。查找表有256个字节,表中每个字节位置包含一个CRC结果,共有256种可能的8位消息(与多项式大小无关)。
列表2示出了采用查找表方法的C代码,包括生成查找表crcInit()中数值的代码。
列表2:采用查找表方法的CRC算法C代码。
crc crcTable[256];
void crcInit(void)
{
crc remainder;
/*
* Compute the remainder of each possible dividend.
*/
for (int dividend = 0; dividend < 256; ++dividend)
{
/*
* Start with the dividend followed by zeros.
*/
remainder = dividend << (WIDTH - 8);
/*
* Perform molo-2 division, a bit at a time.
*/
for (unsigned char bit = 8; bit > 0; "bit)
{
/*
* Try to divide the current data bit.
*/
if (remainder & TOPBIT)
{
remainder = (remainder << 1) ^ POLYNOMIAL;
}
else
{
remainder = (remainder << 1);
}
}
/*
* Store the result into the table.
*/
crcTable[dividend] = remainder;
}
} /* crcInit() */
crc crcFast(unsigned char const message[], int nBytes)
{
unsigned char data;
crc remainder = 0;
/*
* Divide the message by the polynomial, a byte at a time.
*/
for (int byte = 0; byte < nBytes; ++byte)
{
data = message[byte] ^ (remainder >> (WIDTH - 8));
remainder = crcTable[data] ^ (remainder << 8);
}
/*
* The final remainder is the CRC.
*/
return (remainder);
} /* crcFast() */
整个计算减少为一个循环,每字节(不是每位)有两个异或、两个移位操作和两个装载指令。基本上,这里是用查找表的存储空间来换取速度。该方法比逐位计算的方法要快9.9倍,这一提高对某些应用已经足够。如果需要更高的性能,可以尝试编写汇编代码或增加查找表容量以挤出更多性能来。但是,如果需要20、50甚至500倍的性能提高,就要考虑采用硬件加速来实现该算法了。
表1:各种规模的数据模块下CRC算法测试比较结果。
2.采用定制指令方法
CRC算法由连续的异或和移位操作构成,用很少的逻辑即可在硬件中简单实现。由于这一硬件模块仅需几个周期来计算CRC,采用定制指令来实现CRC计算要比采用外围电路更好。此外,无须涉及系统中任何其它外围电路或存储器。仅需要一个微处理器来支持定制指令即可,一般是指可配置微处理器。
当在硬件中实现时,算法应该每次执行16或32位计算,这取决于所采用的CRC标准。如果采用CRC-CCITT标准(16位多项式),最好每次执行16位计算。如果使用8位微处理器,效率可能不太高,因为装载操作数值及返回CRC值需要额外的周期。图2示出了用硬件实现16位CRC算法的内核。
信号msg(15..0)每次被移入异或/移位硬件一位。列表3示出了在64KB数据模块上计算CRC的一些C代码例子。该实例是针对Nios嵌入式处理器。
列表3:采用定制指令的CRC计算C代码。
unsigned short crcCompute(unsigned short *data_block, unsigned int nWords)
{
unsigned short* pointer;
unsigned short word;
/*
* initialize crc reg to 0xFFFF
*/
word = nm_crc (0xFFFF, 1); /* nm_crc() is the CRC custom instruction */
/*
* calculate CRC on block of data
* nm_crc() is the CRC custom instruction
*
*/
for (pointer = data_block; pointer < (data_block + nWords); pointer ++)
word = nm_crc(*pointer, 0) return (word);
}
int main(void)
{
#define data_block_begin (na_onchip_memory)
#define data_block_end (na_onchip_memory + 0xffff)
unsigned short crc_result;
unsigned int data_block_length = (unsigned short *)data_block_end - (unsigned short
*)data_block_begin + 1;
crc_result = crcCompute((unsigned short *)data_block_begin, data_block_length);
}
采用定制指令时,用于计算CRC值的代码是一个函数调用,或宏。当针对Nios处理器实现定制指令时,系统构建工具会生成一个宏。在本例中为nm_crc(),可用它来调用定制指令。
在启动CRC计算之前,定制指令内的CRC寄存器需要先初始化。装载初始值是CRC标准的一部分,而且每种CRC标准都不一样。接着,循环将为数据模块中的每16位数据调用一次CRC定制指令。这种定制指令实现方式要比逐位实现的方法快27倍。
3.CRC外围电路方法
如果将CRC算法作为硬件外围电路来实现,并利用DMA将数据从存储器转移到外围电路,这样还可以进一步提高速度。这种方法将省去处理器为每次计算而装载数据所需要的额外周期。DMA可在此外围电路完成前一次CRC计算的时钟周期内提供新的数据。图3示出了利用DMA、CRC外围电路来实现加速的系统模块示意图。
在64KB数据模块上,利用带DMA的定制外围电路可获得比逐位计算的纯软件算法快500倍的性能。要知道,随着数据模块规模的增加,使用DMA所获得的性能也随之提高。这是因为设置DMA仅需很少的开销,设置之后DMA运行得特别快,因为每个周期它都可以传递数据。因此,若只有少数字节的数据,用DMA并不划算。
这里所讨论的所有采用CRC-CCITT标准(16位多项式)的算法都是在Altera Stratix FPGA的Nios处理器上实现的。表1示出了各种数据长度的测试比较结果,以及大致的硬件使用情况(FPGA中的存储器或逻辑单元)。
可以看出,算法所用的硬件越多,算法速度越快。这是用硬件资源来换取速度。
2. 国密算法中,哪一个是需要硬件支持的对称加密算法
国密SM2是非对称密码算法。非对称加密算法需要两个密钥:公开密钥和私有密钥。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快
3. 如何深入理解无人机硬件与算法
常见飞行器机型系列告一段落后,MR.城堡专栏的“城堡里学无人机系列”将逐渐深入到算法、硬件、无人机设计等内容。首先面对的问题就是如何选择合适的“过渡切入点”,即如何找到一个切入点能够让喜欢无人机的朋友们容易过渡到无人机的专业内容,这个环节非常重要。因为大家虽然都很喜欢无人机,但现实情况是每个人的教育背景,对无人机的需求,看待问题和事物的习惯与角度等都有很大区别。
同样的,无论采用随身tracker还是内置传感系统的地面站式遥控器抑或直接采用手机,都可以传输回被跟踪目标的“外环状态信息”。
两者比较,形成状态误差,通过IMU等传感器反馈无人机内环姿态信息,与目标姿态形成状态误差,并以此计算得出控制量。
通过状态视角,可以很清晰的理解不同产品的硬件意义,并以此设计自己的无人机控制系统。
围绕着无人机状态反馈信息的处理和使用,算法可以走向两个不同的分支:数据融合(数据滤波)和自动控制。根据不同的状态特点,围绕数学模型建立系统框架,根据算法以及反馈状态信息的要求选择相关的硬件搭建无人机系统等内容是无人机控制系统设计的清晰脉络。MR.城堡会在后续系列文章中逐渐搭建这个系统架构中的各个部分,帮助不同行业喜欢无人机的朋友走入奇妙的无人机世界。