当前位置:首页 » 操作系统 » 播迁算法

播迁算法

发布时间: 2024-04-15 10:45:14

❶ 神经网络算法原理

4.2.1 概述

人工神经网络的研究与计算机的研究几乎是同步发展的。1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。

神经网络技术在众多研究者的努力下,理论上日趋完善,算法种类不断增加。目前,有关神经网络的理论研究成果很多,出版了不少有关基础理论的着作,并且现在仍是全球非线性科学研究的热点之一。

神经网络是一种通过模拟人的大脑神经结构去实现人脑智能活动功能的信息处理系统,它具有人脑的基本功能,但又不是人脑的真实写照。它是人脑的一种抽象、简化和模拟模型,故称之为人工神经网络(边肇祺,2000)。

人工神经元是神经网络的节点,是神经网络的最重要组成部分之一。目前,有关神经元的模型种类繁多,最常用最简单的模型是由阈值函数、Sigmoid 函数构成的模型(图 4-3)。

储层特征研究与预测

以上算法是对每个样本作权值修正,也可以对各个样本计算δj后求和,按总误差修正权值。

❷ hinton鍙戞槑浜嗕竴绉嶈$畻绁炵粡缃戠粶鍙傛暟镄勫揩阃熺畻娉

hinton鍙戞槑浜嗕竴绉嶈$畻绁炵粡缃戠粶鍙傛暟镄勫揩阃熺畻娉曪纴鍙钖庡悜浼犳挱绠楁硶銆

钖庡悜浼犳挱绠楁硶镄勫熀链浠嬬粛锛

钖庡悜浼犳挱绠楁硶绠绉痫P绠楁硶锛岄傚悎浜庡氩眰绁炵粡鍏幂绣缁灭殑涓绉嶅︿範绠楁硶锛屽畠寤虹珛鍦ㄦ搴︿笅闄嶆硶镄勫熀纭涓娿傝繖涓绠楁硶鍜岄摼寮忔硶鍒欑粨钖堢敤浜庢湁鏁埚湴璁缁幂炵粡缃戠粶銆

瀹幂殑淇℃伅澶勭悊鑳藉姏𨱒ユ簮浜庣亩鍗曢潪绾挎у嚱鏁扮殑澶氭″嶅悎,锲犳ゅ叿链夊緢寮虹殑鍑芥暟澶岖幇鑳藉姏銆

❸ 神经网络——BP算法

对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。

1969年,作为人工神经网络创始人的明斯基(Marrin M insky)和佩珀特(Seymour Papert)合作出版了《感知器》一书,论证了简单的线性感知器功能有限,不能解决如“异或”(XOR )这样的基本问题,而且对多层网络也持悲观态度。这些论点给神经网络研究以沉重的打击,很多科学家纷纷离开这一领域,神经网络的研究走向长达10年的低潮时期。[1]

1974年哈佛大学的Paul Werbos发明BP算法时,正值神经外网络低潮期,并未受到应有的重视。[2]

1983年,加州理工学院的物理学家John Hopfield利用神经网络,在旅行商这个NP完全问题的求解上获得当时最好成绩,引起了轰动[2]。然而,Hopfield的研究成果仍未能指出明斯基等人论点的错误所在,要推动神经网络研究的全面开展必须直接解除对感知器——多层网络算法的疑虑。[1]

真正打破明斯基冰封魔咒的是,David Rumelhart等学者出版的《平行分布处理:认知的微观结构探索》一书。书中完整地提出了BP算法,系统地解决了多层网络中隐单元连接权的学习问题,并在数学上给出了完整的推导。这是神经网络发展史上的里程碑,BP算法迅速走红,掀起了神经网络的第二次高潮。[1,2]

因此,BP算法的历史意义:明确地否定了明斯基等人的错误观点,对神经网络第二次高潮具有决定性意义。

这一点是说BP算法在神经网络领域中的地位和意义。

BP算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多是在使用BP算法进行训练[2],包括最近炙手可热的深度学习概念下的卷积神经网络(CNNs)。

BP神经网络是这样一种神经网络模型,它是由一个输入层、一个输出层和一个或多个隐层构成,它的激活函数采用sigmoid函数,采用BP算法训练的多层前馈神经网络。

BP算法全称叫作误差反向传播(error Back Propagation,或者也叫作误差逆传播)算法。其算法基本思想为:在2.1所述的前馈网络中,输入信号经输入层输入,通过隐层计算由输出层输出,输出值与标记值比较,若有误差,将误差反向由输出层向输入层传播,在这个过程中,利用梯度下降算法对神经元权值进行调整。

BP算法中核心的数学工具就是微积分的 链式求导法则 。

BP算法的缺点,首当其冲就是局部极小值问题。

BP算法本质上是梯度下降,而它所要优化的目标函数又非常复杂,这使得BP算法效率低下。

[1]、《BP算法的哲学思考》,成素梅、郝中华着

[2]、《机器学习》,周志华着

[3]、 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

2016-05-13 第一次发布

2016-06-04 较大幅度修改,完善推导过程,修改文章名

2016-07-23 修改了公式推导中的一个错误,修改了一个表述错误

❹ 一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)

反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。

全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不使用任何第三方的深度学习框架)来解决一个具体的问题。

图 1 所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大。

为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:

输入的样本为:

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

第一层隐藏层有三个神经元: 、 和 。该层的输入为:

以 神经元为例,则其输入为:

同理有:

假设我们选择函数 作为该层的激活函数(图1中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为: 、 和 。

第二层隐藏层有两个神经元: 和 。该层的输入为:

即第二层的输入是第一层的输出乘以第二层的权重,再加上第二层的偏置。因此得到和的输入分别为:

该层的输出分别为: 和 。

输出层只有一个神经元 :。该层的输入为:

即:

因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为: 。

在1.1节里,我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为 ,其中 是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重 和偏置 )的偏导数。

假设我们要对第 层隐藏层的参数 和 求偏导数,即求 和 。假设 代表第 层神经元的输入,即 ,其中 为前一层神经元的输出,则根据链式法则有:

因此,我们只需要计算偏导数 、 和 。

前面说过,第k层神经元的输入为: ,因此可以得到:

上式中, 代表第 层神经元的权重矩阵 的第 行, 代表第 层神经元的权重矩阵 的第 行中的第 列。

我们以1.1节中的简单神经网络为例,假设我们要计算第一层隐藏层的神经元关于权重矩阵的导数,则有:

因为偏置b是一个常数项,因此偏导数的计算也很简单:

依然以第一层隐藏层的神经元为例,则有:

偏导数 又称为 误差项(error term,也称为“灵敏度”) ,一般用 表示,例如 是第一层神经元的误差项,其值的大小代表了第一层神经元对于最终总误差的影响大小。

根据第一节的前向计算,我们知道第 层的输入与第 层的输出之间的关系为:

又因为 ,根据链式法则,我们可以得到 为:

由上式我们可以看到,第 层神经元的误差项 是由第 层的误差项乘以第 层的权重,再乘以第 层激活函数的导数(梯度)得到的。这就是误差的反向传播。
现在我们已经计算出了偏导数 、 和 ,则 和 可分别表示为:

下面是基于随机梯度下降更新参数的反向传播算法:

单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。

我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:

输入的样本为(假设其真实类标为"1"):

第一层网络的参数为:

第二层网络的参数为:

第三层网络的参数为:

假设所有的激活函数均为Logistic函数: 。使用均方误差函数作为损失函数:

为了方便求导,我们将损失函数简化为:

我们首先初始化神经网络的参数,计算第一层神经元:

上图中我们计算出了第一层隐藏层的第一个神经元的输入 和输出 ,同理可以计算第二个和第三个神经元的输入和输出:

接下来是第二层隐藏层的计算,首先我们计算第二层的第一个神经元的输入z₄和输出f₄(z₄):

同样方法可以计算该层的第二个神经元的输入 和输出 :

最后计算输出层的输入 和输出 :

首先计算输出层的误差项 ,我们的误差函数为 ,由于该样本的类标为“1”,而预测值为 ,因此误差为 ,输出层的误差项为:

接着计算第二层隐藏层的误差项,根据误差项的计算公式有:

最后是计算第一层隐藏层的误差项:

❺ 经济上的翻一番,两番,“番”是怎么个算法

番的意思是倍,翻一番是原来的2倍,翻两番是原来的4倍,翻三番是原来的8倍,翻四番是原来的16倍,以此类推,翻N番就是2的N次销梁方,即2ᴺ。

例如,2000年中国人均GDP为7078元,按当年汇率折算为约856美元。亏派运如果2020年实现翻两番,那么到时候人均GDP应该达到3500美元左右。



(5)播迁算法扩展阅读

番的其他意思

1、ACGN用语

番,是动画剧的意思。日语里,“节目”写作“番”。根据一年当中片子大量新出的集中几个月,又分为一月新番、四月新番、七月新番、十月新番。

番又分为表番和里番,一般电视台在一个专门播放动画剧的时段,都会连续播放两部不同的动画剧,羡答先被电视台选择播出的叫做表番,后播出的就叫做里番。

表番一般收视率都高,而里番一般都远离主流观众人群,受到表番的阴影,收视率都不是太高。另外ova,oad等远离电视形式发行的作品,也可以称为里番。

2、印刷行业术语

在印刷行业中,番常用来表示厚度等,一般1番=0.001mm。

❻ 什么是粒子群算法

粒子群算法介绍(摘自http://blog.sina.com.cn/newtech)
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较着名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.

粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .

粒子群算法

1. 引言

粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究

PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍

同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域

2. 背景: 人工生命

"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容

1. 研究如何利用计算技术研究生物现象
2. 研究如何利用生物技术研究计算问题

我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.

现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为

例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.

在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.

粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.

3. 算法介绍

如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索

PSO 初始化为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。

在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)

v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.

程序的伪代码如下

For each particle
____Initialize particle
END

Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End

____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained

在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax

4. 遗传算法和 PSO 的比较

大多数演化计算技术都是用同样的过程
1. 种群随机初始化
2. 对种群内的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关
3. 种群根据适应值进行复制
4. 如果终止条件满足的话,就停止,否则转步骤2

从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解

但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。

与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解

5. 人工神经网络 和 PSO

人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。

演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。

不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值

演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦

最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题

这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。

我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

6. PSO的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数
PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误

PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置

粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200

粒子的长度: 这是由优化问题决定, 就是问题解的长度

粒子的范围: 由优化问题决定,每一维可是设定不同的范围

Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20

学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间

中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.

全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.

另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)

❼ 人工智能算法都有哪些

1、神经网络算法:

人工神稿哪经网络系统是20世纪40年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

2、BP神经网络算法:

又称为误差反向传播算法,是人工神经网络中的一种监裤晌督式的学习算法。理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

3、小波变换:

一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等胡敬锋缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。

4、遗传算法:

模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

5、粒子群算法:

也称粒子群优化算法或鸟群觅食算法,是近年来开发的一种新的进化算法。从随机解出发,通过迭代寻找最优解。

热点内容
搭建一个20人游戏服务器 发布:2024-11-27 19:31:10 浏览:229
vs2010mfc编程入门 发布:2024-11-27 19:31:00 浏览:359
和编码编程 发布:2024-11-27 19:24:04 浏览:608
智慧城市数据库 发布:2024-11-27 19:23:56 浏览:193
e络通的密码格式是什么 发布:2024-11-27 19:07:36 浏览:189
微博能看到访问记录吗 发布:2024-11-27 19:05:37 浏览:657
安卓主屏幕固定在哪里 发布:2024-11-27 19:02:50 浏览:297
安卓手机软件怎么用数据线连接 发布:2024-11-27 18:48:11 浏览:253
刀剑乱舞挂机脚本 发布:2024-11-27 18:37:56 浏览:505
截取字符串java 发布:2024-11-27 18:34:09 浏览:332