点遍历算法
⑴ 数据结构中"遍历"是什么意思
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点旅悄备所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。
(1)点遍历算法扩展阅读:
树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次。
在数据结构中三种最重要的遍历方式分别称为前序遍历、中序遍历和后序遍历。
以下是三种遍历的方法:
1、中序:若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵访问根结点;
⑶遍历右子树。
2、先序遍历:若二叉树非空,则依次执行如下操作:
⑴ 访问根结点;
⑵ 遍历左子树;
⑶ 遍历右子树。
3、后序遍历:若二叉树非空,则依次执行如下操作:
⑴运猛遍历左子树;
⑵遍历右子树;
⑶访问根结点。
以这3种方式遍历一棵树时,若按访问结点的先后次序将结点排列起来,就可分别拆毁得到树中所有结点的前序列表、中序列表和后序列表。相应的结点次序分别称为结点的前序、中序和后序。
⑵ 从原点出发,遍历50个点,再回到原点的最短路径,求matlab程序
据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等。美国火星探测器核心的寻路算法就是采用的D*(D Star)算法。
最短路经计算分静态最短路计算和动态最短路计算。
静态路径最短路径算法是外界环境不变,计算最短路径。主要有Dijkstra算法,A*(A Star)算法。
动态路径最短路是外界环境不断发生变化,即不能计算预测的情况下计算最短路。如在游戏中敌人或障碍物不断移动的情况下。典型的有D*算法。这是Drew程序实现的10000个节点的随机路网三条互不相交最短路真实路网计算K条路径示例:节点5696到节点3006,三条最快速路,可以看出路径基本上走环线或主干路。黑线为第一条,兰线为第二条,红线为第三条。约束条件系数为1.2。共享部分路段。 显示计算部分完全由Drew自己开发的程序完成。 参见 K条路算法测试程序
Dijkstra算法求最短路径:
Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式,Drew为了和下面要介绍的 A* 算法和 D* 算法表述一致,这里均采用OPEN,CLOSE表的方式。
大概过程:
创建两个表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
1. 访问路网中里起始点最近且没有被检查过的点,把这个点放入OPEN组中等待检查。
2. 从OPEN表中找出距起始点最近的点,找出这个点的所有子节点,把这个点放到CLOSE表中。
3. 遍历考察这个点的子节点。求出这些子节点距起始点的距离值,放子节点到OPEN表中。
4. 重复2,3,步。直到OPEN表为空,或找到目标点。
这是在drew 程序中4000个节点的随机路网上Dijkstra算法搜索最短路的演示,黑色圆圈表示经过遍历计算过的点由图中可以看到Dijkstra算法从起始点开始向周围层层计算扩展,在计算大量节点后,到达目标点。所以速度慢效率低。
提高Dijkstra搜索速度的方法很多,据Drew所知,常用的有数据结构采用Binary heap的方法,和用Dijkstra从起始点和终点同时搜索的方法。
推荐网页:http://www.cs.ecnu.e.cn/assist/js04/ZJS045/ZJS04505/zjs045050a.htm
简明扼要介绍Dijkstra算法,有图解显示和源码下载。
A*(A Star)算法:启发式(heuristic)算法
A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值
if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
if(X not in both)
求X的估价值;
并将X插入OPEN表中;//还没有排序
}
将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
}
⑶ python算法系列—深度优先遍历算法
一、什么是深度优先遍历
深度优先遍历算法是经典的图论算法。从某个节点v出发开始进行搜索。不断搜索直到该节点所有的边都被遍历完,当节点v所有的边都被遍历完以后,深度优先遍历算法则需要回溯到v以前驱节点来继续搜索这个节点。
注意:深度优先遍历问题一定要按照规则尝试所有的可能才行。
二、二叉树
2.二叉树类型
二叉树类型:空二叉树、满二叉树、完全二叉树、完美二叉树、平衡二叉树。
空二叉树:有零个节点
完美二叉树:每一层节点都是满的二叉树(如1中举例的图)
满二叉树:每一个节点都有零个或者两个子节点
完全二叉树:出最后一层外,每一层节点都是满的,并且最后一层节点全部从左排列
平衡二叉树:每个节点的两个子树的深度相差不超过1.
注:国内对完美二叉树和满二叉树定义相同
3.二叉树相关术语
术语 解释
度 节点的度为节点的子树个数
叶子节点 度为零的节点
分支节点 度不为零的节点
孩子节点 节点下的两个子节点
双亲节点 节点上一层的源节点
兄弟节点 拥有同一双亲节点的节点
根 二叉树的源头节点
深度 二叉树中节点的层的数量
DLR(先序):
LDR(中序):
LRD(后序):
注意:L代表左子树R代表右子树;D代表根
6.深度优先遍历和广度优先遍历
深度优先遍历:前序、中序和后序都是深度优先遍历
从根节点出发直奔最远节点,
广度优先遍历:首先访问举例根节点最近的节点,按层次递进,以广度优先遍历上图的顺序为:1-2-3-4-5-6-7
三、面试题+励志
企鹅运维面试题:
1.二叉树遍历顺序:看上文
2.用你熟悉的语言说说怎么创建二叉树? python看上文
⑷ c++二叉树的几种遍历算法
遍历二叉树的所有结点且仅访问一次。按照根节点位置的不同分为前序遍历,中序遍历,后序遍历(除此之外还有层次遍历,但不常用,此处不做解释)。
1.前序遍历:根节点->左子树->右子树(根节点在前面)。
2.中序遍历:左子树->根节点->右子树(根节点在中间)。
3.后序遍历:左子树->右子树->根节点(根节点在后边)。
例如:求下面树的三种遍历:
前序遍历:abdefgc;
中序遍历:debgfac;
后序遍历:edgfbca。
⑸ 图遍历的算法
图的遍历方法目前有深度优先搜索法和广度(宽度)优先搜索法两种算法。 深度优先搜索法是树的先根遍历的推广,它的基本思想是:从图G的某个顶点v0出发,访问v0,然后选择一个与v0相邻且没被访问过的顶点vi访问,再从vi出发选择一个与vi相邻且未被访问的顶点vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点w,从w出发按同样的方法向前遍历,直到图中所有顶点都被访问。其递归算法如下:
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void DFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum; ++v)
visited[v] = FALSE; //访问标志数组初始化
for(v=0; v<G.vexnum; ++v)
if(!visited[v])
DFS(G, v); //对尚未访问的顶点调用DFS
}
void DFS(Graph G, int v){ //从第v个顶点出发递归地深度优先遍历图G
visited[v]=TRUE; VisitFunc(v); //访问第v个顶点
for(w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v,w))
//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
//若w是v的邻接顶点,NextAdjVex返回v的(相对于w的)下一个邻接顶点。
//若w是v的最后一个邻接点,则返回空(0)。
if(!visited[w])
DFS(G, w); //对v的尚未访问的邻接顶点w调用DFS
} 图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点vi1,vi2,…, vi t,并均标记已访问过,然后再按照vi1,vi2,…, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。其非递归算法如下:
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void BFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum, ++v)
visited[v] = FALSE;
initQueue(Q); //置空辅助队列Q
for(v=0; v<G.vexnum; ++v)
if(!visited[v]){
visited[v]=TRUE; VisitFunc(v);
EnQueue(Q, v); //v入队列
while(!QueueEmpty(Q)){
DeQueue(Q, u); //队头元素出队并置为u
for(w=FirstAdjVex(G,u); w>=0; w=NextAdjVex(G,u,w))
if(!Visited[w]){ //w为u的尚未访问的邻接顶点
Visited[w]=TRUE; VisitFunc(w);
EnQueue(Q, w);
}
}
}
}