当前位置:首页 » 操作系统 » 社区划分算法

社区划分算法

发布时间: 2024-03-22 14:04:33

㈠ 基于社区发现算法和图分析Neo4j解读《权力的游戏》下篇

其中的分析和可视化是用Gephi做的,Gephi是非常流行的图分析工具。但作者觉得使用Neo4j来实现更有趣。

节点中心度
节点中心度给出网络中节点的重要性的相对度量。有许多不同的方式来度量中心度,每种方式都代表不同类型的“重要性”。

度中心性(Degree Centrality)
度中心性是最简单度量,即为某个节点在网络中的联结数。在《权力的游戏》的图中,某个角色的度中心性是指该角色接触的其他角色数。作者使用Cypher计算度中心性:
MATCH (c:Character)-[:INTERACTS]- RETURN c.name AS character, count(*) AS degree ORDER BY degree DESC

character
degree

Tyrion
36

Jon
26

Sansa
26

Robb
25

Jaime
24

Tywin
22

Cersei
20

Arya
19

Joffrey
18

Robert
18

从上面可以发现,在《权力的游戏》网络中提利昂·兰尼斯特(Tyrion)和最多的角色有接触。鉴于他的心计,我们觉得这是有道理的。

加权度中心性(Weighted Degree Centrality)
作者存储一对角色接触的次数作为 INTERACTS 关系的 weight 属性。对该角色的 INTERACTS 关系的所有 weight 相加得到加权度中心性。作者使用Cypher计算所有角色的这个度量:
MATCH (c:Character)-[r:INTERACTS]- RETURN c.name AS character, sum(r.weight) AS weightedDegree ORDER BY weightedDegree DESC

character
weightedDegree

Tyrion
551

Jon
442

Sansa
383

Jaime
372

Bran
344

Robb
342

Samwell
282

Arya
269

Joffrey
255

Daenerys
232

介数中心性(Betweenness Centrality)
介数中心性:在网络中,一个节点的介数中心性是指其它两个节点的所有最短路径都经过这个节点,则这些所有最短路径数即为此节点的介数中心性。介数中心性是一种重要的度量,因为它可以鉴别出网络中的“信息中间人”或者网络聚类后的联结点。

图6中红色节点是具有高的介数中心性,网络聚类的联结点。
为了计算介数中心性,作者使用Neo4j 3.x或者apoc库。安装apoc后能用Cypher调用其170+的程序:
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.betweenness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreSET node.betweenness = scoreRETURN node.name AS name, score ORDER BY score DESC

name
score

Jon
1279.7533534055322

Robert
1165.6025171231624

Tyrion
1101.3849724234349

Daenerys
874.8372110508583

Robb
706.5572832464792

Sansa
705.1985623519137

Stannis
571.5247305125714

Jaime
556.1852522889822

Arya
443.01358430043337

Tywin
364.7212195528086

紧度中心性(Closeness centrality)
紧度中心性是指到网络中所有其他角色的平均距离的倒数。在图中,具有高紧度中心性的节点在聚类社区之间被高度联结,但在社区之外不一定是高度联结的。

图7 :网络中具有高紧度中心性的节点被其它节点高度联结
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.closeness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreRETURN node.name AS name, score ORDER BY score DESC

name
score

Tyrion
0.004830917874396135

Sansa
0.004807692307692308

Robert
0.0047169811320754715

Robb
0.004608294930875576

Arya
0.0045871559633027525

Jaime
0.004524886877828055

Stannis
0.004524886877828055

Jon
0.004524886877828055

Tywin
0.004424778761061947

Eddard
0.004347826086956522

使用python-igraph
Neo4j与其它工具(比如,R和Python数据科学工具)完美结合。我们继续使用apoc运行 PageRank和社区发现(community detection)算法。这里接着使用python-igraph计算分析。Python-igraph移植自R的igraph图形分析库。 使用 pip install python-igraph 安装它。

从Neo4j构建一个igraph实例
为了在《权力的游戏》的数据的图分析中使用igraph,首先需要从Neo4j拉取数据,用Python建立igraph实例。作者使用 Neo4j 的Python驱动库py2neo。我们能直接传入Py2neo查询结果对象到igraph的 TupleList 构造器,创建igraph实例:
from py2neo import Graphfrom igraph import Graph as IGraph graph = Graph query = ''' MATCH (c1:Character)-[r:INTERACTS]->(c2:Character) RETURN c1.name, c2.name, r.weight AS weight '''ig = IGraph.TupleList(graph.run(query), weights=True)

现在有了igraph对象,可以运行igraph实现的各种图算法来。

PageRank
作者使用igraph运行的第一个算法是PageRank。PageRank算法源自Google的网页排名。它是一种特征向量中心性(eigenvector centrality)算法。
在igraph实例中运行PageRank算法,然后把结果写回Neo4j,在角色节点创建一个pagerank属性存储igraph计算的值:
pg = ig.pagerank pgvs = for p in zip(ig.vs, pg): print(p) pgvs.append({"name": p[0]["name"], "pg": p[1]}) pgvs write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.pagerank = n.pg '''graph.run(write_clusters_query, nodes=pgvs)

现在可以在Neo4j的图中查询最高PageRank值的节点:
MATCH (n:Character) RETURN n.name AS name, n.pagerank AS pagerank ORDER BY pagerank DESC LIMIT 10

name
pagerank

Tyrion
0.042884981999963316

Jon
0.03582869669163558

Robb
0.03017114665594764

Sansa
0.030009716660108578

Daenerys
0.02881425425830273

Jaime
0.028727587587471206

Tywin
0.02570016262642541

Robert
0.022292016521362864

Cersei
0.022287327589773507

Arya
0.022050209663844467

社区发现(Community detection)

图8
社区发现算法用来找出图中的社区聚类。作者使用igraph实现的随机游走算法( walktrap)来找到在社区中频繁有接触的角色社区,在社区之外角色不怎么接触。
在igraph中运行随机游走的社区发现算法,然后把社区发现的结果导入Neo4j,其中每个角色所属的社区用一个整数来表示:
clusters = IGraph.community_walktrap(ig, weights="weight").as_clustering nodes = [{"name": node["name"]} for node in ig.vs]for node in nodes: idx = ig.vs.find(name=node["name"]).index node["community"] = clusters.membership[idx] write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.community = toInt(n.community) '''graph.run(write_clusters_query, nodes=nodes)

我们能在Neo4j中查询有多少个社区以及每个社区的成员数:
MATCH (c:Character) WITH c.community AS cluster, collect(c.name) AS members RETURN cluster, members ORDER BY cluster ASC

cluster
members

0
[Aemon, Alliser, Craster, Eddison, Gilly, Janos, Jon, Mance, Rattleshirt, Samwell, Val, Ygritte, Grenn, Karl, Bowen, Dalla, Orell, Qhorin, Styr]

1
[Aerys, Amory, Balon, Brienne, Bronn, Cersei, Gregor, Jaime, Joffrey, Jon Arryn, Kevan, Loras, Lysa, Meryn, Myrcella, Oberyn, Podrick, Renly, Robert, Robert Arryn, Sansa, Shae, Tommen, Tyrion, Tywin, Varys, Walton, Petyr, Elia, Ilyn, Pycelle, Qyburn, Margaery, Olenna, Marillion, Ellaria, Mace, Chataya, Doran]

2
[Arya, Beric, Eddard, Gendry, Sandor, Anguy, Thoros]

3
[Brynden, Catelyn, Edmure, Hoster, Lothar, Rickard, Robb, Roose, Walder, Jeyne, Roslin, Ramsay]

4
[Bran, Hodor, Jojen, Luwin, Meera, Rickon, Nan, Theon]

5
[Belwas, Daario, Daenerys, Irri, Jorah, Missandei, Rhaegar, Viserys, Barristan, Illyrio, Drogo, Aegon, Kraznys, Rakharo, Worm]

6
[Davos, Melisandre, Shireen, Stannis, Cressen, Salladhor]

7
[Lancel]

角色“大合影”
《权力的游戏》的权力图。节点的大小正比于介数中心性,颜色表示社区(由随机游走算法获得),边的厚度正比于两节点接触的次数。现在已经计算好这些图的分析数据,让我们对其进行可视化,让数据看起来更有意义。
Neo4j自带浏览器可以对Cypher查询的结果进行很好的可视化,但如果我们想把可视化好的图嵌入到其它应用中,可以使用Javascript可视化库Vis.js。从Neo4j拉取数据,用Vis.js的neovis.js构建可视化图。Neovis.js提供简单的API配置,例如:
var config = { container_id: "viz", server_url: "localhost", labels: { "Character": "name" }, label_size: { "Character": "betweenness" }, relationships: { "INTERACTS": }, relationship_thickness: { "INTERACTS": "weight" }, cluster_labels: { "Character": "community" } }; var viz = new NeoVis(config); viz.render;

其中:
节点带有标签Character,属性name;

节点的大小正比于betweenness属性;

可视化中包括INTERACTS关系;

关系的厚度正比于weight属性;

节点的颜色是根据网络中社区community属性决定;

从本地服务器localhost拉取Neo4j的数据;

在一个id为viz的DOM元素中展示可视化。

㈡ 社区检测算法(Community Detection)

社区检测(community detection)又被称为是社区发现,它是用来揭示网络聚集行为的一种技术。社区检测实际就是一种网络聚类的方法,这里的“社区”在文献中并没有一种严格的定义,我们可以将其理解为一类具有相同特性的节点的集合。

近年来,社区检测得到了快速的发展,这主要是由于复杂网络领域中的大牛Newman提出了一种模块度(molarity)的概念,从而使得网络社区划分的优劣可以有一个明确的评价指标来衡量。一个网络不通情况下的社区划分对应不同的模块度,模块度越大,对应的社区划分也就越合理;如果模块度越小,则对应的网络社区划分也就越模糊。

下图描述了网络中的社区结构:

Newman提出的模块度计算公式如下:

所以模块度其实就是指一个网络在某种社区划分下与随机网络的差异,因为随机网络并不具有社区结构,对应的差异越大说明该社区划分越好。

Newman提出的模块度具有两方面的意义:

(1)模块度的提出成为了社区检测评价一种常用指标,它是度量网络社区划分优劣的量化指标;

(2)模块度的提出极大地促进了各种优化算法应用于社区检测领域的发展。在模块度的基础之上,许多优化算法以模块度为优化的目标方程进行优化,从而使得目标函数达到最大时得到不错的社区划分结果。

当然,模块度的概念不是绝对合理的,它也有弊端,比如分辨率限制问题等,后期国内学者在模块度的基础上提出了模块度密度的概念,可以很好的解决模块度的弊端,这里就不详细介绍了。

常用的社区检测方法主要有如下几种:

(1)基于图分割的方法,如Kernighan-Lin算法,谱平分法等;

(2)基于层次聚类的方法,如GN算法、Newman快速算法等;

(3)基于模块度优化的方法,如贪婪算法、模拟退火算法、Memetic算法、PSO算法、进化多目标优化算法等

热点内容
东方财富dk指标源码 发布:2025-01-18 14:45:53 浏览:435
陌陌登陆密码是什么 发布:2025-01-18 14:36:54 浏览:848
海龟编译器代码 发布:2025-01-18 14:16:51 浏览:34
大闸蟹网站源码 发布:2025-01-18 14:12:19 浏览:105
电脑服务器日期怎么改 发布:2025-01-18 14:05:03 浏览:687
用什么方法打开密码箱呢 发布:2025-01-18 14:04:08 浏览:428
net编程模式 发布:2025-01-18 13:54:20 浏览:691
手机上传播病毒 发布:2025-01-18 13:49:20 浏览:504
空调压缩机电路 发布:2025-01-18 13:42:42 浏览:546
空间访问的记录恢复 发布:2025-01-18 13:26:19 浏览:999