蚁群算法求参
❶ 如何用蚁群算法来计算固定时间内走更多的城市且路程最短
概念:蚁群算法(ant colony optimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值
其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序
应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内
引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.
❷ 求带注释的蚁群算法
Sorry,没有注释!
放不下,网站上有!
下面就是实现如此复杂性的七条简单规则:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是33个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
7、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。
其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。
源代码如下:
ant.c
#define SPACE 0×20
#define ESC 0×1b
#define ANT_CHAR_EMPTY ‘+’
#define ANT_CHAR_FOOD 153
#define HOME_CHAR ‘H’
#define FOOD_CHAR ‘F’
#define FOOD_CHAR2 ‘f’
#define FOOD_HOME_COLOR 12
#define BLOCK_CHAR 177
#define MAX_ANT 50
#define INI_SPEED 3
#define MAXX 80
#define MAXY 23
#define MAX_FOOD 10000
#define TARGET_FOOD 200
#define MAX_SMELL 5000
#define SMELL_DROP_RATE 0.05
#define ANT_ERROR_RATE 0.02
#define ANT_EYESHOT 3
#define SMELL_GONE_SPEED 50
#define SMELL_GONE_RATE 0.05
#define TRACE_REMEMBER 50
#define MAX_BLOCK 100
#define NULL 0
#define UP 1
#define DOWN 2
#define LEFT 3
#define RIGHT 4
#define SMELL_TYPE_FOOD 0
#define SMELL_TYPE_HOME 1
#include “stdio.h”
#include “conio.h”
#include “dos.h”
#include “stdlib.h”
#include “dos.h”
#include “process.h”
#include “ctype.h”
#include “math.h”
void WorldInitial(void);
void BlockInitial(void);
void CreatBlock(void);
void SaveBlock(void);
void LoadBlock(void);
void HomeFoodInitial(void);
void AntInitial(void);
void WorldChange(void);
void AntMove(void);
void AntOneStep(void);
void DealKey(char key);
void ClearSmellDisp(void);
void DispSmell(int type);
int AntNextDir(int xxx,int yyy,int ddir);
int GetMaxSmell(int type,int xxx,int yyy,int ddir);
int IsTrace(int xxx,int yyy);
int MaxLocation(int num1,int num2,int num3);
int CanGo(int xxx,int yyy,int ddir);
int JudgeCanGo(int xxx,int yyy);
int TurnLeft(int ddir);
int TurnRight(int ddir);
int TurnBack(int ddir);
int MainTimer(void);
char WaitForKey(int secnum);
void DispPlayTime(void);
int TimeUse(void);
void HideCur(void);
void ResetCur(void);
—————
struct HomeStruct
{
int xxx,yyy;
int amount;
int TargetFood;
}home;
struct FoodStruct
{
int xxx,yyy;
int amount;
}food;
struct AntStruct
{
int xxx,yyy;
int dir;
int speed;
int SpeedTimer;
int food;
int SmellAmount[2];
int tracex[TRACE_REMEMBER];
int tracey[TRACE_REMEMBER];
int TracePtr;
int IQ;
}ant[MAX_ANT];
int AntNow;
int timer10ms;
struct time starttime,endtime;
int Smell[2][MAXX+1][MAXY+1];
int block[MAXX+1][MAXY+1];
int SmellGoneTimer;
int SmellDispFlag;
int CanFindFood;
int HardtoFindPath;
—– Main ——–
void main(void)
{
char KeyPress;
int tu;
clrscr();
HideCur();
WorldInitial();
do
{
timer10ms = MainTimer();
if(timer10ms) AntMove();
if(timer10ms) WorldChange();
tu = TimeUse();
if(tu=60&&!CanFindFood)
{
gotoxy(1,MAXY+1);
printf(“Can not find food, maybe a block world.”);
WaitForKey(10);
WorldInitial();
}
if(tu=180&&home.amount100&&!HardtoFindPath)
{
gotoxy(1,MAXY+1);
printf(“God! it is so difficult to find a path.”);
if(WaitForKey(10)==0×0d) WorldInitial();
else
{
HardtoFindPath = 1;
gotoxy(1,MAXY+1);
printf(” “);
}
}
if(home.amount=home.TargetFood)
{
gettime(&endtime);
KeyPress = WaitForKey(60);
DispPlayTime();
WaitForKey(10);
WorldInitial();
}
else if(kbhit())
{
KeyPress = getch();
DealKey(KeyPress);
}
else KeyPress = NULL;
}
while(KeyPress!=ESC);
gettime(&endtime);
DispPlayTime();
WaitForKey(10);
clrscr();
ResetCur();
}
❸ 求助Matlab蚁群算法求一般函数极值的算法
function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)
%% ---------------------------------------------------------------
% ACASP.m
% 蚁群算法动态寻路算法
% ChengAihua,PLA Information Engineering University,ZhengZhou,China
% Email:[email protected]
% All rights reserved
%% ---------------------------------------------------------------
% 输入参数列表
% G 地形图为01矩阵,如果为1表示障碍物
% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)
% K 迭代次数(指蚂蚁出动多少波)
% M 蚂蚁个数(每一波蚂蚁有多少个)
% S 起始点(最短路径的起始点)
% E 终止点(最短路径的目的点)
% Alpha 表征信息素重要程度的参数
% Beta 表征启发式因子重要程度的参数
% Rho 信息素蒸发系数
% Q 信息素增加强度系数
%
% 输出参数列表
% ROUTES 每一代的每一只蚂蚁的爬行路线
% PL 每一代的每一只蚂蚁的爬行路线长度
% Tau 输出动态修正过的信息素
%% --------------------变量初始化----------------------------------
%load
D=G2D(G);
N=size(D,1);%N表示问题的规模(象素个数)
MM=size(G,1);
a=1;%小方格象素的边长
Ex=a*(mod(E,MM)-0.5);%终止点横坐标
if Ex==-0.5
Ex=MM-0.5;
end
Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标
Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数
%下面构造启发式信息矩阵
for i=1:N
if ix==-0.5
ix=MM-0.5;
end
iy=a*(MM+0.5-ceil(i/MM));
if i~=E
Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
else
Eta(1,i)=100;
end
end
ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线
PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度
%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁--------------------
for k=1:K
disp(k);
for m=1:M
%% 第一步:状态初始化
W=S;%当前节点初始化为起始点
Path=S;%爬行路线初始化
PLkm=0;%爬行路线长度初始化
TABUkm=ones(1,N);%禁忌表初始化
TABUkm(S)=0;%已经在初始点了,因此要排除
DD=D;%邻接矩阵初始化
%% 第二步:下一步可以前往的节点
DW=DD(W,:);
DW1=find(DW
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同
while W~=E&&Len_LJD>=1
%% 第三步:转轮赌法选择下一步怎么走
PP=zeros(1,Len_LJD);
for i=1:Len_LJD
PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
end
PP=PP/(sum(PP));%建立概率分布
Pcum=cumsum(PP);
Select=find(Pcum>=rand);
%% 第四步:状态更新和记录
Path=[Path,to_visit];%路径增加
PLkm=PLkm+DD(W,to_visit);%路径长度增加
W=to_visit;%蚂蚁移到下一个节点
for kk=1:N
if TABUkm(kk)==0
DD(W,kk)=inf;
DD(kk,W)=inf;
end
end
TABUkm(W)=0;%已访问过的节点从禁忌表中删除
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
end
%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度
ROUTES{k,m}=Path;
if Path(end)==E
PL(k,m)=PLkm;
else
PL(k,m)=inf;
end
end
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
for m=1:M
if PL(k,m) ROUT=ROUTES{k,m};
TS=length(ROUT)-1;%跳数
PL_km=PL(k,m);
for s=1:TS
x=ROUT(s);
Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
end
end
end
Tau=(1-Rho).
❹ 蚁群算法的相关研究
跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:
1、多样性
2、正反馈
多样性保证了蚂蚁在觅食的时候不至走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了! 蚁群算法的由来:蚂蚁是地球上最常见、数量最多的昆虫种类之一,常常成群结队地出现在人类的日常生活环境中。这些昆虫的群体生物智能特征,引起了一些学者的注意。意大利学者M.Dorigo,V.Maniezzo等人在观察蚂蚁的觅食习性时发现,蚂蚁总能找到巢穴与食物源之间的最短路径。经研究发现,蚂蚁的这种群体协作功能是通过一种遗留在其来往路径上的叫做信息素(Pheromone)的挥发性化学物质来进行通信和协调的。化学通信是蚂蚁采取的基本信息交流方式之一,在蚂蚁的生活习性中起着重要的作用。通过对蚂蚁觅食行为的研究,他们发现,整个蚁群就是通过这种信息素进行相互协作,形成正反馈,从而使多个路径上的蚂蚁都逐渐聚集到最短的那条路径上。
这样,M.Dorigo等人于1991年首先提出了蚁群算法。其主要特点就是:通过正反馈、分布式协作来寻找最优路径。这是一种基于种群寻优的启发式搜索算法。它充分利用了生物蚁群能通过个体间简单的信息传递,搜索从蚁巢至食物间最短路径的集体寻优特征,以及该过程与旅行商问题求解之间的相似性。得到了具有NP难度的旅行商问题的最优解答。同时,该算法还被用于求解Job-Shop调度问题、二次指派问题以及多维背包问题等,显示了其适用于组合优化类问题求解的优越特征。
多年来世界各地研究工作者对蚁群算法进行了精心研究和应用开发,该算法现已被大量应用于数据分析、机器人协作问题求解、电力、通信、水利、采矿、化工、建筑、交通等领域。
蚁群算法之所以能引起相关领域研究者的注意,是因为这种求解模式能将问题求解的快速性、全局优化特征以及有限时间内答案的合理性结合起来。其中,寻优的快速性是通过正反馈式的信息传递和积累来保证的。而算法的早熟性收敛又可以通过其分布式计算特征加以避免,同时,具有贪婪启发式搜索特征的蚁群系统又能在搜索过程的早期找到可以接受的问题解答。这种优越的问题分布式求解模式经过相关领域研究者的关注和努力,已经在最初的算法模型基础上得到了很大的改进和拓展。
经过一定时间,从食物源返回的蚂蚁到达D点同样也碰到障碍物,也需要进行选择。此时A, B两侧的信息素浓度相同,它们仍然一半向左,一半向右。但是当A侧的蚂蚁已经完全绕过障碍物到达C点时,B侧的蚂蚁由于需走的路径更长,还不能到达C点,图3表示蚁群在障碍物前经过一段时间后的情形。
此时对于从蚁巢出发来到C点的蚂蚁来说,由于A侧的信息素浓度高,B侧的信息素较低,就倾向于选择A侧的路径。这样的结果是A侧的蚂蚁越来越多,最终所有蚂蚁都选择这条较短的路径,图4 表示蚁群最终选择的路径
上述过程,很显然是由蚂蚁所留下的信息素的“正反馈”过程而导致的。蚂蚁个体就是通过这种信息的交流来达到搜索食物的目的。蚁群算法的基本思想也是从这个过程转化而来的。
蚁群算法的特点:
1)蚁群算法是一种自组织的算法。在系统论中,自组织和它组织是组织的两个基本分类,其区别在于组织力或组织指令是来自于系统的内部还是来自于系统的外部,来自于系统内部的是自组织,来自于系统外部的是他组织。如果系统在获得空间的、时间的或者功能结构的过程中,没有外界的特定干预,我们便说系统是自组织的。在抽象意义上讲,自组织就是在没有外界作用下使得系统熵减小的过程(即是系统从无序到有序的变化过程)。蚁群算法充分体现了这个过程,以蚂蚁群体优化为例子说明。当算法开始的初期,单个的人工蚂蚁无序的寻找解,算法经过一段时间的演化,人工蚂蚁间通过信息激素的作用,自发的越来越趋向于寻找到接近最优解的一些解,这就是一个无序到有序的过程。
2)蚁群算法是一种本质上并行的算法。每只蚂蚁搜索的过程彼此独立,仅通过信息激素进行通信。所以蚁群算法则可以看作是一个分布式的多agent系统,它在问题空间的多点同时开始进行独立的解搜索,不仅增加了算法的可靠性,也使得算法具有较强的全局搜索能力。
3)蚁群算法是一种正反馈的算法。从真实蚂蚁的觅食过程中我们不难看出,蚂蚁能够最终找到最短路径,直接依赖于最短路径上信息激素的堆积,而信息激素的堆积却是一个正反馈的过程。对蚁群算法来说,初始时刻在环境中存在完全相同的信息激素,给予系统一个微小扰动,使得各个边上的轨迹浓度不相同,蚂蚁构造的解就存在了优劣,算法采用的反馈方式是在较优的解经过的路径留下更多的信息激素,而更多的信息激素又吸引了更多的蚂蚁,这个正反馈的过程使得初始的不同得到不断的扩大,同时又引导整个系统向最优解的方向进化。因此,正反馈是蚂蚁算法的重要特征,它使得算法演化过程得以进行。
4)蚁群算法具有较强的鲁棒性。相对于其它算法,蚁群算法对初始路线要求不高,即蚁群算法的求解结果不依赖于初始路线的选择,而且在搜索过程中不需要进行人工的调整。其次,蚁群算法的参数数目少,设置简单,易于蚁群算法应用到其它组合优化问题的求解。
蚁群算法的应用进展以蚁群算法为代表的蚁群智能已成为当今分布式人工智能研究的一个热点,许多源于蜂群和蚁群模型设计的算法己越来越多地被应用于企业的运转模式的研究。美国五角大楼正在资助关于群智能系统的研究工作-群体战略(Swarm Strategy),它的一个实战用途是通过运用成群的空中无人驾驶飞行器和地面车辆来转移敌人的注意力,让自己的军队在敌人后方不被察觉地安全进行。英国电信公司和美国世界通信公司以电子蚂蚁为基础,对新的电信网络管理方法进行了试验。群智能还被应用于工厂生产计划的制定和运输部门的后勤管理。美国太平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的运输管理软件,结果每年至少节约了1000万美元的费用开支。英国联合利华公司己率先利用群智能技术改善其一家牙膏厂的运转情况。美国通用汽车公司、法国液气公司、荷兰公路交通部和美国一些移民事务机构也都采用这种技术来改善其运转的机能。鉴于群智能广阔的应用前景,美国和欧盟均于近几年开始出资资助基于群智能模拟的相关研究项目,并在一些院校开设群体智能的相关课程。国内,国家自然科学基金”十五”期间学科交叉类优先资助领域中的认知科学及其信息处理的研究内容中也明确列出了群智能领域的进化、自适应与现场认知主题。
蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,比如图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。蚁群算法在若干领域己获得成功的应用,其中最成功的是在组合优化问题中的应用。
在网络路由处理中,网络的流量分布不断变化,网络链路或结点也会随机地失效或重新加入。蚁群的自身催化与正向反馈机制正好符合了这类问题的求解特点,因而,蚁群算法在网络领域得到一定应用。蚁群觅食行为所呈现出的并行与分布特性使得算法特别适合于并行化处理。因而,实现算法的并行化执行对于大量复杂的实际应用问题的求解来说是极具潜力的。
在某群体中若存在众多无智能的个体,它们通过相互之间的简单合作所表现出来的智能行为即称为集群智能(Swarm Intelligence)。互联网上的交流,不过是更多的神经元连接(人脑)通过互联网相互作用的结果,光缆和路由器不过是轴突和突触的延伸。从自组织现象的角度上看,人脑的智能和蚁群也没有本质上的区别,单个神经元没有智能可言,单个蚂蚁也没有,但是通过连接形成的体系,是一个智能体。(作者: 李精灵 编选:中国电子商务研究中心)
❺ 求生物学 蚁群算法
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
6、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。
❻ 求教:蚁群算法选择最短路径问题
这个例子其实是当初数模比赛时用来完成碎片拼接的,但其所用到原理还是求解最短路径的原理。但这里的最短路径和数据结构中最短路径有一定的区别。在数据结构中,对于最短路径的求解常用的一般有Dijkstra算法与Floyd算法,但对于要求出一条经过所有的点的并且要求路径最短,这些算法还是有一定的局限性的。而蚁群算法则很好地满足了这些条件。话说回来,很想吐槽一下网络流传的一些蚁群算法的例子,当初学习这个时候,身边也没有相关的书籍,只好到网上找例子。网上关于这个算法源代码的常见的有2个版本,都是出自博客,但是在例子都代码是不完整的,缺失了一部分,但就是这样的例子,居然流传甚广,我很好奇那些转载这些源码的人是否真的有去学习过这些,去调试过。当然,我下面的例子也是无法直接编译通过的,因为涉及到图像读取处理等方面的东西,所以就只贴算法代码部分。但是对于这个问题蚁群算法有一个比较大的缺点,就是收敛很慢,不过对于数量小的路径,效果还是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%参数解释:%nt 路径所经过的点的个数;%nc_max 迭代的次数;%m 蚂蚁的个数;%st 起点序号;%sd 终点序号;%Alpha 信息素系数;�ta 启发因子系数;%Rho 蒸发系数;% Q 信息量;%gethead getend 是用来求距离矩阵的,可根据实际情况修改
% nt = 209;%碎片个数full = zeros(nt,nt);tic;%初始化距离矩阵for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1./full;%启发因子,取距离的倒数% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩阵% tabu = zeros(nt,nt);%禁忌矩阵,取蚂蚁数量和碎片数量一致,以减少迭代次数nc =1;%初始化迭代次数;rbest=zeros(nc_max,nt);%各代最佳路线rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路线的长度pathlen = 0;%临时记录每代最佳路线长度stime = 1;%记录代数进度for i = 1:nc_max % 代数循环 delta_tau=zeros(nt,nt);%初始化改变量 stime for t = 1:m % 对蚂蚁群体的循环, tabu=zeros(1,nt);%禁忌向量,标记已访问的碎片,初试值设为0,访问之后则变为1; viseted = zeros(1,nt);%记录已访问的元素的位置 tabu(st) = 1;%st为起点,在此表示为碎片矩阵的编号,因为已经将蚁群放在起点,故也应将禁忌向量和位置向量的状态进行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %记录了还没访问的图片编号 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %获取尚未访问的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)*(eta(visited(end),ju(3))^Beta)% visited(end) %计算选择的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)*(eta(visited(vp),wv(k))^Beta);%下一张碎片的选择概率计算,p =(信息素^信息素系数)*(启发因子^启发因子系数) end pp=pp./(sum(pp));%归一化 pcum =cumsum(pp); psl = find(pcum >= rand);%轮盘赌法 to_visit= wv(psl(1)) ;%完成选点 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已访问碎片个数变化 vp =vp+1; end %路径变化信息 %对单个蚂蚁的路径进行统计 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞记录每个蚂蚁的路径,即碎片顺序;% msum(t) = sum1; %信息素变化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho).*tau+delta_tau; %完成信息素的更新,找出现有的最新的最佳路径,即信息素最多的路径; stime =stime +1;end toc;
❼ 蚁群算法求解TSP问题的源程序及简要说明
简单蚁群算法求解TSP的源程序(我帮你找的)
蚁群算法是新兴的仿生算法,最初是由意大利学者Dorigo M于1991年首次提出,由于具有较强的鲁棒性,优良的分布式计算机制和易于与其它方法结合等优点,成为人工智能领域的一个研究热点。本程序是实现简单的蚁群算法,TSP问题取的是att48,可从http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95获取,程序运行时间可能会比较长,在我的这台CPU 1.6G+内存256M的机器上运行时间大概是13分钟左右。我用的语言是MATLAB 7.1。此程序仅供学习所用,如有问题请反馈。谢谢。(注:程序没有计算最后一个城市回来起点城市的距离)
function [y,val]=QACS
tic
load att48 att48;
MAXIT=300; % 最大循环次数
NC=48; % 城市个数
tao=ones(48,48);% 初始时刻各边上的信息最为1
rho=0.2; % 挥发系数
alpha=1;
beta=2;
Q=100;
mant=20; % 蚂蚁数量
iter=0; % 记录迭代次数
for i=1:NC % 计算各城市间的距离
for j=1:NC
distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);
end
end
bestroute=zeros(1,48); % 用来记录最优路径
routelength=inf; % 用来记录当前找到的最优路径长度
% for i=1:mant % 确定各蚂蚁初始的位置
% end
for ite=1:MAXIT
for ka=1:mant %考查第K只蚂蚁
deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零
[routek,lengthk]=travel(distance,tao,alpha,beta);
if lengthk<routelength % 找到一条更好的路径
routelength=lengthk;
bestroute=routek;
end
for i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量
deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk;
end
deltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;
end
for i=1:NC-1
for j=i+1:NC
if deltatao(i,j)==0
deltatao(i,j)=deltatao(j,i);
end
end
end
tao=(1-rho).*tao+deltatao;
end
y=bestroute;
val=routelength;
toc
function [y,val]=travel(distance,tao,alpha,beta) % 某只蚂蚁找到的某条路径
[m,n]=size(distance);
p=fix(m*rand)+1;
val=0; % 初始路径长度设为 0
tabuk=[p]; % 假设该蚂蚁都是从第 p 个城市出发的
for i=1:m-1
np=tabuk(length(tabuk)); % 蚂蚁当前所在的城市号
p_sum=0;
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
p_sum=p_sum+tao(np,j)^alpha*ada^beta;
end
end
cp=zeros(1,m); % 转移概率
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
cp(j)=tao(np,j)^alpha*ada^beta/p_sum;
end
end
NextCity=pchoice(cp);
tabuk=[tabuk,NextCity];
val=val+distance(np,NextCity);
end
y=tabuk;
function y=isin(x,A) % 判断数 x 是否在向量 A 中,如在返回 1 ,否则返回 0
y=0;
for i=1:length(A)
if A(i)==x
y=1;
break;
end
end
function y=pchoice(A)
a=rand;
tempA=zeros(1,length(A)+1);
for i=1:length(A)
tempA(i+1)=tempA(i)+A(i);
end
for i=2:length(tempA)
if a<=tempA(i)
y=i-1;
break;
end
end
❽ 蚁群算法的内容
蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。