蚁群算法英文
A. 求关于蚁群算法的英文文献,网站或者文章等!跪谢!
采用蚁群算法求解调度模型。
Ant Colony Optimization Algorithms (ACOAs) were appropriate for this optimization problem.
摘要本文引入一种全新的寻优算法-蚁群算法。
In this paper a new optimum algorithm (ant colony optimization) is introced.
摘要蚁群算法是近年来出现的一种新的仿生优化算法。
The ant colony algorithm is a new bionic simulated evolutionary algorithm developed in recent years.
.
http://www.cqtianlong.com/norman_ellison/devolep.htm
http://chemyq.com/expert/ep99/986676_03AF4.htm
B. 蚁群算法在物流配送路径优化问题的英文翻译
The physical distribution routing problem based on ant colony optimization
C. 英语翻译2
AADCS算法原理
AADCS algorithm principle
本算法在传统蚁群算法的基础之上进行改进,根据浓度较高的信息素来吸引后面的蚂蚁,如果路径上的信息素浓度越高,更多蚂蚁就会选择该路径,从而得到一条从出发点到目的地之间的最短路径,该路径就是全局最优解。正是由于蚂蚁优质的寻优能力,适用在云计算任务的分配算法,许多的学者利用该算法解决了复杂的NP问题
This algorithm is improved on the basis of the traditional ant colony algorithm, according to the high concentration of pheromone to attract the ants behind, if the path pheromone concentration is higher, more ants will choose the path, to get the shortest path between a starting point to the destination path, the path is the global optimal solution. It is because of the ant quality optimization ability, suitable for cloud computing task allocation algorithm, many scholars use this algorithm to solve the complex NP problem
在进行虚拟机资源分配算法中,虚拟机表示为X ,任务分解成Y个子任务,子任务表示为X ,在每个时刻,子任务只能在一个虚拟机上执行 ,配合蚁群算法公式计算得到每个虚拟机被某一个任务选中的概率为A
In the virtual machine resource allocation algorithm, the virtual machine is expressed as X, task decomposition into Y sub task, sub task is expressed as X, in every moment, the sub task can only be performed in a virtual machine, calculate the probability of each virtual machine is a task for the selected A formula with ant colony algorithm
B表示期望启发权重因子,都是改变路径选择概率的重要因素, 表示在 A时刻节点 B的信息素浓度, A表示信息素启发权重因子, B表示在时刻 路径节点C 到路径节点D 之间的期望值, A表示蚂蚁已走过的路径,将其加入禁忌表, 表示第A 只蚂蚁能够选择的路径,设 A为蚂蚁的当前迭代次数, A为迭代次数最大值。
B said the expected heuristic weighting factors are important factors to change the path selection probability, said at the A moment B node pheromone concentration, A said the information inspired weight factor, B said in a moment path node between C path to node D expectations, A said the ant has been added to the taboo, table A, said the path of ants can choose, let A be the current iteration number of ants, A for the maximum number of iterations.
通过公式(1)可知,影响虚拟机的选择最大的两个因素就是 A和B ,AADCS算法就是通过虚拟机质量函数对信息素的更新进行改进,利用负载均衡差函数进行改进,提高云计算系统的负载均衡度。
By the formula (1) shows that the two factors influencing the selection of virtual machine is the largest A and B, AADCS algorithm is through the virtual machine quality function to the pheromone update is improved by using the load balancing function was improved, improve the load balance of the system of cloud computing.
D. 关于蚁群算法应用的英文翻译
找不到翻译,给你一个算法吧!
该程序试图对具有31个城市的VRP进行求解,已知的最优解为784.1,我用该程序只能优化到810左右,应该是陷入局部最优,但我不知问题出在什么地方。请用过蚁群算法的高手指教。
蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解
%
%
% the procere of ant colony algorithm for VRP
%
% % % % % % % % % % %
%initialize the parameters of ant colony algorithms
load data.txt;
d=data(:,2:3);
g=data(:,4);
m=31; % 蚂蚁数
alpha=1;
belta=4;% 决定tao和miu重要性的参数
lmda=0;
rou=0.9; %衰减系数
q0=0.95;
% 概率
tao0=1/(31*841.04);%初始信息素
Q=1;% 蚂蚁循环一周所释放的信息素
defined_phrm=15.0; % initial pheromone level value
QV=100; % 车辆容量
vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数
V=40;
% 计算两点的距离
for i=1:32;
for j=1:32;
dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2);
end;
end;
%给tao miu赋初值
for i=1:32;
for j=1:32;
if i~=j;
%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);
tao(i,j)=defined_phrm;
miu(i,j)=1/dist(i,j);
end;
end;
end;
for k=1:32;
for k=1:32;
deltao(i,j)=0;
end;
end;
best_cost=10000;
for n_gen=1:50;
print_head(n_gen);
for i=1:m;
%best_solution=[];
print_head2(i);
sumload=0;
cur_pos(i)=1;
rn=randperm(32);
n=1;
nn=1;
part_sol(nn)=1;
%cost(n_gen,i)=0.0;
n_sol=0; % 由蚂蚁产生的路径数量
M_vehicle=500;
t=0; %最佳路径数组的元素数为0
while sumload<=QV;
for k=1:length(rn);
if sumload+g(rn(k))<=QV;
gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;
A(n)=rn(k);
n=n+1;
end;
end;
fid=fopen('out_customer.txt','a+');
fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));
fprintf(fid,'\n%s','the possible customer set is:')
fprintf(fid,'\t%i\n',A);
fprintf(fid,'------------------------------\n');
fclose(fid);
p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i);
maxp=1e-8;
na=length(A);
for j=1:na;
if p(j)>maxp
maxp=p(j);
index_max=j;
end;
end;
old_pos=cur_pos(i);
if rand(1)<q0
cur_pos(i)=A(index_max);
else
krnd=randperm(na);
cur_pos(i)=A(krnd(1));
bbb=[old_pos cur_pos(i)];
ccc=[1 1];
if bbb==ccc;
cur_pos(i)=A(krnd(2));
end;
end;
tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%对所经弧进行局部更新
sumload=sumload+g(cur_pos(i));
nn=nn+1;
part_sol(nn)=cur_pos(i);
temp_load=sumload;
if cur_pos(i)~=1;
rn=setdiff(rn,cur_pos(i));
n=1;
A=[];
end;
if cur_pos(i)==1; % 如果当前点为车场,将当前路径中的已访问用户去掉后,开始产生新路径
if setdiff(part_sol,1)~=[];
n_sol=n_sol+1; % 表示产生的路径数,n_sol=1,2,3,..5,6...,超过5条对其费用加上车辆的派遣费用
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'条路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s','当前的用户需求量是:');
fprintf(fid,'%i\n',temp_load);
fprintf(fid,'------------------------------\n');
fclose(fid);
% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;
t=t+length(final_sol)-1;
sumload=0;
final_sol=setdiff(final_sol,1);
rn=setdiff(rn,final_sol);
part_sol=[];
final_sol=[];
nn=1;
part_sol(nn)=cur_pos(i);
A=[];
n=1;
end;
end;
if setdiff(rn,1)==[];% 产生最后一条终点不为1的路径
n_sol=n_sol+1;
nl=length(part_sol);
part_sol(nl+1)=1;%将路径的最后1位补1
% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;
cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %计算由蚂蚁i产生的路径总长度
for ki=1:length(temp)-1;
deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i);
end;
if cost(n_gen,i)<best_cost;
best_cost=cost(n_gen,i);
old_cost=best_cost;
best_gen=n_gen; % 产生最小费用的代数
best_ant=i; %产生最小费用的蚂蚁
best_solution=temp;
end;
if i==m; %如果所有蚂蚁均完成一次循环,,则用最佳费用所对应的路径对弧进行整体更新
for ii=1:32;
for jj=1:32;
tao(ii,jj)=(1-rou)*tao(ii,jj);
end;
end;
for kk=1:length(best_solution)-1;
tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution(kk+1))+deltao(best_solution(kk),best_solution(kk+1));
end;
end;
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s %i\n','当前的用户需求量是:',temp_load);
fprintf(fid,'%s %f\n','总费用是:',cost(n_gen,i));
fprintf(fid,'------------------------------\n');
fprintf(fid,'%s\n','最终路径是:');
fprintf(fid,'%i-',temp);
fprintf(fid,'\n');
fclose(fid);
temp=[];
break;
end;
end;
end;
end;
我现在也在研究它,希望能共同进步.建义可以看一下段海滨的关于蚁群算法的书.讲的不错,李士勇的也可以,还有一本我在图书馆见过,记不得名字了.
E. 求翻译关于蚁群算法,英文原文如下:
虽然如此,我们相信蚁群隐喻可以帮助解释我们的典范。考虑到图2图,这是一个可能的解释的现状图1 b。固定的想法,认为D之间的距离和H之间、B和H之间,B和D-via C-are等于一,让C位置之间的一半D和B(见图2)。现在让我们考虑有什么事情发生的时间间隔定期离散:t = 0、1、2、……。假设30新蚂蚁来到我从一个,30天每次单位E,使每个人都只蚂蚁走路速度每时间单位为1,蚂蚁走路时放下在时间t信息素轨迹强度1,而让例子比较简单,瞬间蒸发,完全在中间的连续时间间隔(t + 1,t + 2)。
在t = 0无踪迹吗,但30蚂蚁是在B和30 d .他们选择走哪一条路是完全随机的。因此,平均每个节点15蚂蚁从就要往H和15向C(图2 b)。在t = 1 30新蚂蚁来到我从一个找到一条道路的强度15导致H,铺设在15蚂蚁那样,就从B和一串强度30走上了C,得到了总和的踪迹,制定了15蚂蚁从B和在15蚂蚁达到通过来自维B C(图2 C)。选择职业道路的可能性因此偏见,因此预期的数量,蚂蚁往C将朝着双的H:20和10的分别。这同样适用于新30蚂蚁在D来自大肠这个过程一直持续到所有的蚂蚁最终会选择最短路径。他们的想法是,如果在某一给定一只蚂蚁要选择不同的路径,那些被严重被前蚂蚁(也就是说,那些有高跟踪级别)选择的几率更高。此外高水平是同义词踪迹短路径。
摘要组织如下。第二部分包含描述的像
目前实施和应用问题的定义:部分反映了算法结构问题的结构,我们介绍他们聚在一起。第三部分描述了三种稍微不同的手段应用该算法。IV,V部分报告
实验。第六章我们比较与其他策略、第七章wesubstantiate的鲁棒性和功能性以展示如何,它可以应用到其他的优化问题。第八章我们非正式讨论为什么以及如何为范式的功能。第九章的结论。
F. 求翻译关于于蚁群算法,英文原文如下:
例如考虑实验设置如图1所示。有一个沿该路径蚂蚁走(例如从食物源的巢,反之亦然,见图1)。突然出现障碍和路径被切断。所以在位置的蚂蚁走从一个电子(或在这些位置相反的方向走)必须决定是否左右转动(附图)。选择是影响强度的左前蚂蚁信息素步道。更高层次的信息在正确的道路,使蚂蚁刺激更强,更高的概率右转。第一个蚂蚁到达点(或)有sameprobability左右转动(因为没有以前的信息素的替代路径)。因为路是小于第一个蚂蚁,以下将达到之前第一个蚂蚁以下路径系统(图集成电路)。结果是,蚂蚁返回到将找到一个更强的步道路径粑,造成一半的所有蚂蚁偶然决定的做法,通过dcba障碍和由已到了那些通过码:他们会因此更喜欢(概率)路径粑路径道亨银行。因此,一些蚂蚁路径码后每单位时间将高于蚂蚁数以下公司这使得大量信息素的短路径增长速度比在较长的一个,因此,概率与任何单一的蚂蚁选择跟随的道路迅速偏向较短1。最终的结果是,很快所有蚂蚁都会选择较短的路径。该算法,我们将在下一部分是定义模型的研究得出的真实蚁群。因此,我们呼吁我们的系统,蚁群系统()和算法介绍蚁群算法。因为我们不感兴趣,模拟蚂蚁的殖民地,但在使用人工蚁群的优化工具,我们的系统将有一些重大的分歧,一个真正的人(自然):•人工蚂蚁会有一些记忆,•不能完全失明,•他们将生活在一个环境,在时间离散。
G. 求人工翻译,将下面的文字翻译成英文,不要在线软件翻译的那玩意坑爹
The vehicle path planning is a key link in the optimization of logisticsmanagement, is to raise economic benefits, make logistics scientificessential, but also an important research topic in management science.This graation design according to the actual needs of logistics management application, developed a "shortest path" in the logistics and distribution system. This software mainly by hybrid ant colony algorithm based on ant colony algorithm and the convergence of genetic algorithm to solve the vehicle routing problem in logistics distribution routing group,can help the logistics enterprises to quickly find a reasonable, the distance is short, can rece the cost of logistics enterprises.
Keywords: vehicle routing problem; ant colony algorithm; genetic algorithm; logistics distribution; the shortest path planning.
H. 基于蚁群算法的最优路径选择研究外文文献谁有
你好,请认准正确答案下载附件,文献已上传,蚁群算法的最优路径选择旅行商路径优化外文文献,2014年的,望及时采纳答案!
作者:Ouaarab A, Ahiod B, Yang X S.
文题:Discrete cuckoo search algorithm for the travelling salesman problem
期刊:Neural Computing and Applications, 2014, 24(7-8): 1659-1669.
I. 关于蚁群算法的一些英文专业名词翻译
哥们这都不是专业词汇 你翻译通顺就行了
J. 请把下面这段话翻译成英文:
本文介绍了.NET Remoting,它提供了一种很有用的方法,用于管理跨应用程序域的同步和异步 RPC 会话。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.远程对象代码可以运行在服务器上,也可以运行在客户端上。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.服务器和客户端组件都可以选择端口,就象可以选择通信协议一样。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.因此,很容易建立并运行基本的通信。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.Therefore and very easily build up and circulate basic correspondence.同时介绍了蚁群算法,是模拟蚂蚁的行为而提出的一种启发式算法。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.Therefore and very easily build up and circulate basic correspondence.Introced the 蚁s calculate way in the meantime, is the behavior that imitates ant but put forward of a kind of inspire type calculate way.能够用于求解TSP问题,即旅行商问题,是一类已经被证明具有NPC计算复杂性的组合优化难题。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.Therefore and very easily build up and circulate basic correspondence.The Introced the 蚁 s calculate way in the meantime, is the behavior that imitates ant but put forward of a kind of inspire type calculate way.Can used for solving the TSP problem, then take a trip company's problem, is a type of combination that have already been prove to have the NPC calculation complexity is excellent to turn a hard nut to crack.本文在此基础上,设计了一个基于.NET Remoting的蚁群算法应用,就中国的31个城市的TSP问题,在C#.NET的环境下,运用蚁群算法对其进行求解。