当前位置:首页 » 操作系统 » 质散的算法

质散的算法

发布时间: 2024-02-04 09:11:31

‘壹’ 质因数分解算法

数学中,整数分解(素因数分解)问题是指:给出一个正整数,将其写成几个约数的乘积。例如,给出45这个数,它可以分解成32 ×5。根据算术基本定理,这样的分解结果应该是独一无二的。这个问题在代数学、密码学、计算复杂性理论和量子计算机等领域中有重要意义。
2005年,作为公共研究一部分的有663个二进制数位之长的RSA-200已经被一种一般用途的方法所分解。

如果一个大的,有n个二进制数位长度的数是两个差不多大小相等的约数的乘积,现在还没有很好的算法来以多项式时间复杂度分解它。

这就意味着没有已知算法可以在O(nk)(k为常数)的时间内分解它。但是现在的算法也是比Θ(en)快的。换句话说,现在我们已知最好的算法比指数数量级时间要快,比多项式数量级时间要慢。已知最好的渐近线运行时间是普通数域筛选法(GNFS)。时间是:

对于平常的计算机,GNFS是我们已知最好的对付n个二进制数位大约数的方法。不过,对于量子计算机, 彼得·秀尔在1994年发现了一种可以用多项式时间来解决这个问题的算法。如果大的量子计算机建立起来,这将对密码学有很重要的意义。这个算法在时间上只需要O(n3),空间只要O(n)就可以了。 构造出这样一个算法只需要2n量子位。2001年,第一个7量子位的量子计算机第一个运行这个算法,它分解的数是15

如果想获得最新消息,请你上wikipedia网络,英文版。

‘贰’ 10个常用算法

原理:
二分法查找,也称为折半法,是一种在有序数组中查找特定元素的搜索算法。

一般步骤:
(1)确定该区间的中间位置K;
(2)将查找的值T与array[k]比较。
若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间将缩小一半,递归查找即可。

原理:
一种通过重复将问题分解为同类的子问题而解决问题的方法

典型例子:
斐波那契数列
描述: 斐波那契数列 指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契数列") 自然中的斐波那契数列,这个数列从第3项开始,每一项都等于前两项之和。

解决方式:

原理:
在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。
但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

解决问题一般步骤:
1、 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。

2 、确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。

3 、以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

典型例子:
八皇后问题
描述:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

解决方式: https://blog.csdn.net/weixin_41865447/article/details/80034433

概念:
将杂乱无章的数据元素,通过一定的方法按关键字顺序排列的过程叫做排序。

分类:
非稳定排序算法:快速排序、希尔排序、堆排序、直接选择排序
稳定的排序算法:基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序

十个常用排序算法

利用计算机的高性能来有目的的穷举一个问题解空间的部分或所有的可能情况,从而求出问题的解的一种方法。

分类:
枚举算法、深度优先搜索、广度优先搜索、A*算法、回溯算法、蒙特卡洛树搜索、散列函数等算法。

将一个数据转换为一个标志,这个标志和源数据的每一个字节都有十分紧密的关系。

很难找到逆向规律

只要符合散列思想的算法都可以被称为是Hash算法

对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称为 碰撞

原理
在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在 某种意义上的局部最优解
从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,他的选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止。

一种近似算法

一般步骤:
1、建立数学模型来描述问题;
2、把求解的问题分成若干个子问题;
3、对每一子问题求解,得到子问题的局部最优解;
4、把子问题的解局部最优解合成原来解问题的一个解。

典型例子:
0/1背包问题
马踏棋盘
均分纸牌

例题: https://www.cnblogs.com/hust-chen/p/8646009.html

概念:
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

一般步骤:
(1)分解,将要解决的问题划分成若干规模较小的同类问题;
(2)求解,当子问题划分得足够小时,用较简单的方法解决;
(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

典型例子:
排序中:归并排序、堆排序、快速排序;
实例:找伪币、求最值、棋盘覆盖

https://ke..com/item/%E5%88%86%E6%B2%BB%E7%AE%97%E6%B3%95/3263297

概念:
用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。

动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。

举例:
线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;
树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;
背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济)等;

应用实例:
最短路径问题 ,项目管理,网络流优化等;

https://ke..com/item/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/529408?fromtitle=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%AE%97%E6%B3%95&fromid=15742703&fr=aladdin

概念:
在一个给定的字符文本内搜寻出自己想要找的一个字符串,平常所用的各种文本编辑器里的ctrl+F大多就是使用的这些字符匹配算法。

分类:
KMP、BM、Sunday、Horspool、RK

参考:
https://cloud.tencent.com/developer/news/282694
https://blog.csdn.net/paincupid/article/details/81159320

‘叁’ 数据挖掘的十大经典算法,总算是讲清楚了,想提升自己的赶快收藏

一个优秀的数据分析师,除了要掌握基本的统计学、数据分析思维、数据分析工具之外,还需要掌握基本的数据挖掘思想,帮助我们挖掘出有价值的数据,这也是数据分析专家和一般数据分析师的差距所在。

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。今天主要分享其中10种经典算法,内容较干,建议收藏备用学习。

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效(相对的CART算法只需要扫描两次数据集,以下仅为决策树优缺点)。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。

同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树

CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法(二元切分法);第二个想法是用验证数据进行剪枝(预剪枝、后剪枝)。在回归树的基础上的模型树构建难度可能增加了,但同时其分类效果也有提升。

参考书籍:《机器学习实战》

‘肆’ 干货 | 基础机器学习算法

本篇内容主要是面向机器学习初学者,介绍常见的机器学习算法,当然,欢迎同行交流。

哲学要回答的基本问题是从哪里来、我是谁、到哪里去,寻找答案的过程或许可以借鉴机器学习的套路:组织数据->挖掘知识->预测未来。组织数据即为设计特征,生成满足特定格式要求的样本,挖掘知识即建模,而预测未来就是对模型的应用。

特征设计依赖于对业务场景的理解,可分为连续特征、离散特征和组合高阶特征。本篇重点是机器学习算法的介绍,可以分为监督学习和无监督学习两大类。

无监督学习算法很多,最近几年业界比较关注主题模型,LSA->PLSA->LDA 为主题模型三个发展阶段的典型算法,它们主要是建模假设条件上存在差异。LSA假设文档只有一个主题,PLSA 假设各个主题的概率分布不变(theta 都是固定的),LDA 假设每个文档和词的主题概率是可变的。

LDA 算法本质可以借助上帝掷骰子帮助理解,详细内容可参加 Rickjin 写的《 LDA 数据八卦》文章,浅显易懂,顺便也科普了很多数学知识,非常推荐。

监督学习可分为分类和回归,感知器是最简单的线性分类器,现在实际应用比较少,但它是神经网络、深度学习的基本单元。

线性函数拟合数据并基于阈值分类时,很容易受噪声样本的干扰,影响分类的准确性。逻辑回归(Logistic Regression)利用 sigmoid 函数将模型输出约束在 0 到 1 之间,能够有效弱化噪声数据的负面影响,被广泛应用于互联网广告点击率预估。

逻辑回归模型参数可以通过最大似然求解,首先定义目标函数 L ( theta ),然后 log 处理将目标函数的乘法逻辑转化为求和逻辑(最大化似然概率 -> 最小化损失函数),最后采用梯度下降求解。

相比于线性分类去,决策树等非线性分类器具有更强的分类能力,ID3 和 C4.5 是典型的决策树算法,建模流程基本相似,两者主要在增益函数(目标函数)的定义不同。

线性回归和线性分类在表达形式上是类似的,本质区别是分类的目标函数是离散值,而回归的目标函数是连续值。目标函数的不同导致回归通常基于最小二乘定义目标函数,当然,在观测误差满足高斯分布的假设情况下,最小二乘和最大似然可以等价。

当梯度下降求解模型参数时,可以采用 Batch 模式或者 Stochastic 模式,通常而言,Batch 模式准确性更高,Stochastic 模式复杂度更低。

上文已经提到,感知器虽然是最简单的线性分类器,但是可以视为深度学习的基本单元,模型参数可以由自动编码( Auto Encoder )等方法求解。

深度学习的优势之一可以理解为特征抽象,从底层特征学习获得高阶特征,描述更为复杂的信息结构。例如,从像素层特征学习抽象出描述纹理结构的边缘轮廓特征,更进一步学习获得表征物体局部的更高阶特征。

俗话说三个臭皮匠赛过诸葛亮,无论是线性分类还是深度学习,都是单个模型算法单打独斗,有没有一种集百家之长的方法,将模型处理数据的精度更进一步提升呢?当然,Model Ensembe l就是解决这个问题。Bagging 为方法之一,对于给定数据处理任务,采用不同模型/参数/特征训练多组模型参数,最后采用投票或者加权平均的方式输出最终结果。

Boosting为Model Ensemble 的另外一种方法,其思想为模型每次迭代时通过调整错误样本的损失权重提升对数据样本整体的处理精度,典型算法包括 AdaBoost 、GBDT 等。

不同的数据任务场景,可以选择不同的 Model Ensemble 方法,对于深度学习,可以对隐层节点采用 DropOut 的方法实现类似的效果。

介绍了这么多机器学习基础算法,说一说评价模型优劣的基本准则。欠拟合和过拟合是经常出现的两种情况,简单的判定方法是比较训练误差和测试误差的关系,当欠拟合时,可以设计更多特征来提升模型训练精度,当过拟合时,可以优化特征量降低模型复杂度来提升模型测试精度。

特征量是模型复杂度的直观反映,模型训练之前设定输入的特征量是一种方法,另外一种比较常用的方法是在模型训练过程中,将特征参数的正则约束项引入目标函数/损失函数,基于训练过程筛选优质特征。

模型调优是一个细致活,最终还是需要能够对实际场景给出可靠的预测结果,解决实际问题。期待学以致用! 作者 晓惑 本文转自阿里技术,转载需授权

热点内容
广数编程p 发布:2024-11-28 20:38:37 浏览:665
sql2008vs2010 发布:2024-11-28 20:38:34 浏览:373
编译plc程序 发布:2024-11-28 20:28:49 浏览:916
母婴源码 发布:2024-11-28 20:23:13 浏览:299
ftp标题下划线怎么添加 发布:2024-11-28 20:23:09 浏览:793
电脑金铲铲之战服务器已满怎么办 发布:2024-11-28 20:09:58 浏览:618
脚本六要素 发布:2024-11-28 19:41:07 浏览:986
linuxoralce 发布:2024-11-28 19:39:51 浏览:608
4k存储量 发布:2024-11-28 19:39:36 浏览:825
php动态链接 发布:2024-11-28 19:34:16 浏览:151