当前位置:首页 » 操作系统 » 计算机网络算法

计算机网络算法

发布时间: 2024-01-24 13:21:17

Ⅰ 计算机网络路由算法

关于路由器如何收集网络的结构信息以及对之进行分析来确定最佳路由,有两种主要的路由算法:
总体式路由算法和分散式路由算法。采用分散式路由算法时,每个路由器只有与它直接相连的路由器的信息——而没有网络中的每个路由器的信息。这些算法也被称为DV(距离向量)算法。采用总体式路由算法时,每个路由器都拥有网络中所有其他路由器的全部信息以及网络的流量状态。这些算法也被称为LS(链路状态)算法。

Ⅱ 计算机网络的最短路径算法有哪些对应哪些协议

用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有:
Dijkstra算法、A*算法、SPFA算法、Bellman-Ford算法和Floyd-Warshall算法,本文主要介绍其中的三种。

最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:

确定起点的最短路径问题:即已知起始结点,求最短路径的问题。

确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。

全局最短路径问题:求图中所有的最短路径。
Floyd

求多源、无负权边的最短路。用矩阵记录图。时效性较差,时间复杂度O(V^3)。

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。
Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2)。

Floyd-Warshall的原理是动态规划:

设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。

若最短路径经过点k,则Di,j,k = Di,k,k-1 + Dk,j,k-1;

若最短路径不经过点k,则Di,j,k = Di,j,k-1。

因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。

在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。

Floyd-Warshall算法的描述如下:

for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

if (Di,k + Dk,j < Di,j) then

Di,j ← Di,k + Dk,j;

其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。

Dijkstra

求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E),可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。

当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
Bellman-Ford

求单源最短路,可以判断有无负权回路(若有,则不存在最短路),时效性较好,时间复杂度O(VE)。

Bellman-Ford算法是求解单源最短路径问题的一种算法。

单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。

与Dijkstra算法不同的是,在Bellman-Ford算法中,边的权值可以为负数。设想从我们可以从图中找到一个环

路(即从v出发,经过若干个点之后又回到v)且这个环路中所有边的权值之和为负。那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。
SPFA

是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k< 与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。
SPFA算法可以用于存在负数边权的图,这与dijkstra算法是不同的。

与Dijkstra算法与Bellman-ford算法都不同,SPFA的算法时间效率是不稳定的,即它对于不同的图所需要的时间有很大的差别。
在最好情形下,每一个节点都只入队一次,则算法实际上变为广度优先遍历,其时间复杂度仅为O(E)。另一方面,存在这样的例子,使得每一个节点都被入队(V-1)次,此时算法退化为Bellman-ford算法,其时间复杂度为O(VE)。
SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA。

Ⅲ 计算机网络安全基础 des算法主要有哪几部分

主要分成三部分组成:密钥生成、加密和解密。
由于DES的加密和解密算法是一样的,只不过密钥使用顺序颠倒了。所以具体实现起来只需要写一个密钥生成程序和一个加密程序。

Ⅳ Dijkstrath算法是什么如何用Dijkstrath算法求计算机网络拓扑图的最短路径

Dijkstra算法是典型 的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
迪杰斯特拉(Dijkstra)算法思想
按路径长度递增次序产生最短路径算法:

把V分成两组:

(1)S:已求出最短路径的顶点的集合

(2)V-S=T:尚未确定最短路径的顶点集合

将T中顶点按最短路径递增的次序加入到S中,

保证:(1)从源点V0到S中各顶点的最短路径长度都不大于

从V0到T中任何顶点的最短路径长度

(2)每个顶点对应一个距离值

S中顶点:从V0到此顶点的最短路径长度

T中顶点:从V0到此顶点的只包括S中顶点作中间

顶点的最短路径长度

依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的

直接路径的权值;或是从V0经S中顶点到Vk的路径权值之派渣和

(反证法可证)尘穗悄

求最短路径步骤
算法步骤如下:

1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值

若存在族改<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值

若不存在<V0,Vi>,d(V0,Vi)为∝

2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S

3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的

距离值缩短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

Ⅳ 计算机网络中的距离向量算法(RIP)的基本原理

RIP协议采用距离向量算法,在实际使用中已经较少适用。在默认情况下,RIP使用一种非常简单的度量制度:距离就是通往目的站点所需经过的链路数,取值为1~15,数值16表示无穷大。RIP进程使用UDP的520端口来发送和接收RIP分组。RIP分组每隔30s以广播的形式发送一次,为了防止出现“广播风暴”,其后续的的分组将做随机延时后发送。在RIP中,如果一个路由在180s内未被刷,则相应的距离就被设定成无穷大,并从路由表中删除该表项。RIP分组分为两种:请求分组和响应分组。

Ⅵ 计算机网络中的路由器使用距离向量算法

1、假设路由器使用距离向量算法,下图给出了网络拓扑及路由器的初始路由表(只包含部分字段),假设A给B传了一次路由信息,B处理后又也给C传了一次路由信息,请在表中填写经过路由信息交换之后B和C的路由表(相邻路由器间距离计为1)。
2、B路由器增加2条:10.3.0.0 s0 1
10.4.0.0 s1 1
3、C路由器增加2条:10.3.0.0 s0 2
10.2.0.0 S0 1

热点内容
iphone如何设置像安卓动态壁纸 发布:2024-11-29 01:37:50 浏览:473
电脑如何避过联网查配置 发布:2024-11-29 01:25:16 浏览:971
期货软件编程 发布:2024-11-29 01:13:16 浏览:833
如何下载加密pdf文件 发布:2024-11-29 01:09:21 浏览:325
高通android开发 发布:2024-11-29 01:09:11 浏览:692
xp电脑无线网密码怎么看密码 发布:2024-11-29 01:08:30 浏览:123
恋爱剧脚本 发布:2024-11-29 00:59:58 浏览:574
安卓官方版阴阳师在哪里下载 发布:2024-11-29 00:59:50 浏览:416
全球有多少忘记密码丢失的比特币 发布:2024-11-29 00:59:02 浏览:668
苹果手机如何操作安卓三大键 发布:2024-11-29 00:58:55 浏览:165