当前位置:首页 » 操作系统 » 字符串kmp算法

字符串kmp算法

发布时间: 2024-01-21 14:56:18

㈠ 数据结构与算法——字符串匹配问题(KMP算法)

KMP算法也是比较着名的模式匹配算法。是由 D.E.Knuth,J.H.Morrs VR.Pratt 发表的一个模式匹配算法。可以大大避免重复遍历的情况。

如果使用暴风算法的话,前面五个字母完全相等,直到第六个字母 "f" "x" 不相等。如下图:

T = “abcdex”
j 123456
模式串 abcdex
next[j] 011111

T = "abcabx"
j 123456
模式串T abcabx
next[j] 011123

T = "ababaaaba"
j———————123456789
模式串T——— ababaaaba
next[j]————011234223

T = "aaaaaaaab"
j———————123456789
模式串T——— aaaaaaaab
next[j]————012345678

next数组其实就是求解字符串要回溯的位置
假设,主串S= “abcababca”;模式串T=“abcdex”,由以上分析得出next数组为011111,next数组意味着当主串与模式串不匹配时,都需要从第一个的位置重新比较。

KMP算法也是有缺陷的,比如主串S=“aaaabcde”,模式串T= “aaaaax”。next的数组就是012345;

当开始匹配时,当i= 5,j = 5时,我们发现字符"b"与字符“a”不相等,如上图,j = next[5] = 4;

由于T串的第二、三、四、五位置的字符都与首位“a”相等,那么可以用首位next[1]的值去取代与它相等的后续字符的next[j],那么next数组为{0,0,0,0,0,5};

在求解nextVal数组的5种情况

㈡ 算法-KMP

大一下参加学校ACM预备队集训的时候首次接触KMP算法,当时看了很多介绍文章,仍然不是很理解其实质,只是简单地套模板AC题目,待大二数据结构与算法课堂上再听老师介绍一次,才恍然大悟其实KMP也就是那么回事嘛。但当初为啥看那么多文章都没弄明白呢?正巧最近和朋友聊天时他告诉我他对KMP不是很理解,于是打算自己写一篇文章,巩固自己对KMP的认识,也希望能够帮助更多朋友理解KMP。
在开始之前,需要知晓的概念:

前缀:以原串串头为自身串头的子串,如 的前缀有:
后缀:以原串串尾为自身串尾的子串,如 的后缀有:

注意:字符串前后缀都不包括该串本身

给你一个文本串T(Text String)

再给你一个模式串P(Pattern String)

问该模式串是否在文本串中,怎么找?

一开始只好分别从文本串与模式串的串头开始逐字母比较

二者相同,再比较T串与P串的下一位

如此反复

如果一直这么顺利,两串对应位置的字符总相同,待P串中最后一个字符也匹配完毕,说明该模式串在文本串中存在,耶( •̀ ω •́ )y超开心,查找结束。但,大多数匹配过程不会如此顺利,在该例中,当匹配进行至

很明显,失配了。现在怎么办?按朴素思想,将P串相对T串整体右移一位,重新开始匹配,即

但这种算法效率无疑是十分低下的。设T串长度N,P串长度M,则朴素算法时间复杂度为O(MN)

已知的重要信息并没有被使用——已匹配的字符串前缀

在上例中,当P串最后一个字符匹配失败时,其已有包含七个字符的 前缀子串S 匹配成功

完全可以利用前缀子串S做点什么。观察到在S串

中,有相同前后缀,即下图蓝色部分

而S串各字符又与T串中对应字符相同,即有

当失配发生后,直接将P串右移四位使S串蓝色后缀部分对齐T串中蓝色前缀部分

从图中红框部分继续尝试匹配,发现再次失配。这次,已匹配成功的前缀串S为

而在该串中没有相同的前后缀,只能将P串串头移至失配处进行比较

再次失配。此时前缀串S为空串,只好如朴素算法般将P串整体右移一位,重新开始比较

匹配成功。于是又按照之前的步骤往下匹配,直至再次失配或匹配成功

后续步骤同上,不再赘述

上述示例已展现,KMP算法的精髓在于对已匹配成功的前缀串S的利用

在朴素算法中,匹配失败了,T串待匹配字符会回溯

T串原本已匹配至T[7] = 'X',但是因为失配,需回溯到T[1] = 'b'重新开始匹配

而在KMP算法中,若P[M]与T[K]匹配失败,K不会回溯。既然匹配过程是从T[0]开始逐渐向右进行的,至T[K]失配发生时,T[0]至T[K-1]早已匹配过,何必再回溯过去重复匹配呢?于是乎,就如问题引入部分展示般

每当失配发生,我们总是去关注P串中已匹配成功的前缀串S

因为该前缀串是匹配成功的,说明在T串中必定存在与该前缀串相同的子串,记为S'

若S串中存在相同前后缀

则S'串必然也存在此相同前后缀

所以只需将P串右移四位,使得S串的该相同前缀对齐S'串的该相同后缀

再尝试比较T[7]与P[3]

至于T[7]与P[3]是否能够匹配另说(当然,本例中一看就知道没匹配上),但通过对前缀串S的利用,成功省去了P串右移一位、两位和三位后的无效匹配

继续深入思考,给定一个具体的P串,其第N位的前缀串S内容是固定的,则S是否存在相同前后缀、相同前后缀的长度与内容也是确定的。换言之,对于一个具体的P串,当其与给定T串匹配至P[N]失配,P串应右移几位再次与T串进行匹配也是确定的。我们完全可以使用一个数组记录当P[N]失配后,应当使用N之前的哪一位再来与T串进行匹配,以此提高匹配效率,记该数组为Next数组

定义Next[i] = j表示当P串中第i位失配后,跳转至P串第j位再次尝试匹配

还是以之前的P串为例,它的Next数组求出来应为

取下标5为例,其前缀串为

最长相同前后缀为

若P[5]失配,应跳转至P[1]再次尝试匹配(最长相同前缀对应P[0],则取其后一位P[1],若存在多位,则取最后一位的下一位),P[5]的前一个字符P[4]对应字符'a',而P[1]前一个字符P[0]同对应字符'a',保证了P[1]之前字符与T串中对应字符保持匹配。所以Next[5] = 1,其余下标对应Next数组值同如此求。

特别地,规定Next[0] = -1。而对于除下标0外的任意下标N,Next[N]的含义是 前N-1个已匹配成功的字符构成的前缀串S中,最长相同前后缀长度。 所以若在下标为N处匹配失败了,则应前往Next[N]所对应的下标处匹配。

具体地,以下图所示为例,P[6]与T[6]失配

而Next[6] = 2,所以使用P[2]再次尝试与T[6]进行匹配

当求出P串Next数组后,便可快速进行与T串的匹配

现在问题只剩下如何求Next数组,注意到Next数组既然只与P串本身相关,与文本串T无关,故令P串与自身匹配即可求得

考虑字符串

其Next数组应为

令其与给定文本串相匹配

当匹配进行至

失配,于是跳转至P[Next[3]] = P[1]处再次尝试匹配

再度失配,也必然失配

问题在于不该出现P[N] =P[Next[N]]

若P[N] =P[Next[N]],则P[N]失配后使用P[Next[N]]再次尝试匹配,由于P[N] =P[Next[N]],P[N]匹配失败,P[Next[N]]必然也失败

因此,若出现P[N] =P[Next[N]]情况,则令Next[N]=Next[Next[N]]

本例中该字符串新Next数组为

当匹配进行至

失配,于是跳转至P[Next[3]] = P[0]处再次尝试匹配

省去了之前跳转至P[1]处的无效匹配

设T串长度M,P串长度N,由于KMP算法不会回溯,分析易知时间复杂度为O(m+n)

对于P[N],若其前缀串S含相同前后缀F,且F长度为n(n>1),Next[N]可以取1至n中任意值,为最大化匹配效率考虑,总是取最大相同前后缀以提高效率,节省时间

㈢ 图解KMP字符串匹配算法

kmp算法跟之前讲的bm算法思想有一定的相似性。之前提到过,bm算法中有个好后缀的概念,而在kmp中有个好前缀的概念,什么是好前缀,我们先来看下面这个例子。

观察上面这个例子,已经匹配的abcde称为好前缀,a与之后的bcde都不匹配,所以没有必要再比一次,直接滑动到e之后即可。
  那如果前缀中有互相匹配的字符呢?

观察上面这个例子,这个时候如果我们直接滑到好前缀之后,则会过度滑动,错失匹配子串。那我们如何根据好前缀来进行合理滑动?

  其实就是看当前的好前缀的前缀和后缀是否有匹配的,找到最长匹配长度,直接滑动。鉴于不止一次找最长匹配长度,我们完全可以先初始化一个数组,保存在当前好前缀情况下,最长匹配长度是多少,这时候我们的next数组就出来了。

  我们定义一个next数组,表示在当前好前缀下,好前缀的前缀和后缀的最长匹配子串长度,这个最长匹配长度表示这个子串之前已经匹配过匹配了,不需要再次进行匹配,直接从子串的下一个字符开始匹配。

 我们是否每次算next[i]时都需要每一个字符进行匹配,是否可以根据next[i - 1]进行推导以便减少不必要的比较。
  带着这个思路我们来看看下面的步骤:
  假设next[i - 1] = k - 1;
  如果modelStr[k] = modelStr[i] 则next[i]=k

如果modelStr[k] != modelStr[i],我们是否可以直接认定next[i] = next[i - 1]?

通过上面这个例子,我们可以很清晰地看到,next[i]!=next[i-1],那当modelStr[k]!=modelStr[i]时候,我们已知next[0],next[1]…next[i-1],如何推导出next[i]呢?
  假设modelStr[x…i]是前缀后缀能匹配的最长后缀子串,那么最长匹配前缀子串为modelStr[0…i-x]

我们在求这个最长匹配串的时候,他的前面的次长匹配串(不包含当前i的),也就是modelStr[x…i-1]在之前应该是已经求解出来了的,因此我们只需要找到这个某一个已经求解的匹配串,假设前缀子串为modelStr[0…i-x-1],后缀子串为modelStr[x…i-1],且modelStr[i-x] == modelStr[i],这个前缀后缀子串即为次前缀子串,加上当前字符即为最长匹配前缀后缀子串。
代码实现
  首先在kmp算法中最主要的next数组,这个数组标志着截止到当前下标的最长前缀后缀匹配子串字符个数,kmp算法里面,如果某个前缀是好前缀,即与模式串前缀匹配,我们就可以利用一定的技巧不止向前滑动一个字符,具体看前面的讲解。我们提前不知道哪些是好前缀,并且匹配过程不止一次,因此我们在最开始调用一个初始化方法,初始化next数组。
  1.如果上一个字符的最长前缀子串的下一个字符==当前字符,上一个字符的最长前缀子串直接加上当前字符即可
  2.如果不等于,需要找到之前存在的最长前缀子串的下一个字符等于当前子串的,然后设置当前字符子串的最长前缀后缀子串

然后开始利用next数组进行匹配,从第一个字符开始匹配进行匹配,找到第一个不匹配的字符,这时候之前的都是匹配的,接下来先判断是否已经是完全匹配,是直接返回,不是,判断是否第一个就不匹配,是直接往后面匹配。如果有好前缀,这时候就利用到了next数组,通过next数组知道当前可以从哪个开始匹配,之前的都不用进行匹配。

㈣ KMP算法求next数组的问题

字符串如果是以0为下标的话next[7]是0,只有最后一位与第一位相等。

在第i个字符前面的i-1个字符里面,

从开头开始的1个字符与最后1个字符是否相等,若不是,则next[i]=0;

从开头开始的2个字符与最后2个字符是否相等,若不是,则next[i]=1;

从开头开始的3个字符与最后3个字符是否相等,若不是,则next[i]=2;

前缀next数组的求解算法:

void SetPrefix(const char *Pattern, int prefix[])

{

int len=CharLen(Pattern);//模式字符串长度。

prefix[0]=0;

for(int i=1; i<len; i++)

{

int k=prefix[i-1];

//不断递归判断是否存在子对称,k=0说明不再有子对称,Pattern[i] != Pattern[k]说明虽然对称,但是对称后面的值和当前的字符值不相等,所以继续递推。

(4)字符串kmp算法扩展阅读:

kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置。常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(nm)。kmp算法通过一个O(m)的预处理,使匹配的复杂度降为O(n+m)。

㈤ 解析一哈c语言中的kmp算法,bf算法,kr算法之间的联系与区别,尽量浅显易懂,谢谢!

三种算法联系:都是字符串匹配算法。
区别:
“KMP算法”:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。
“BF算法”是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。
“KR算法”在每次比较时,用HASH算法计算文本串和模式串的HASH映射,通过比较映射值的大小来比较字符串是否匹配。但是考虑到HASH冲突,所以在映射值相同的时候,还需要近一步比较字符串是否相同。但是在每次比较时,需要计算HASH值,所以选择合适的HASH算法很重要。
略知一二!

㈥ kmp算法的基本思想

主串:a
b
a
c
a
a
b
a
c
a
b
a
c
a
b
a
a
b
b,下文中我们称作T
模式串:a
b
a
c
a
b,下文中我们称作W
在暴力字符串匹配过程中,我们会从T[0]

W[0]
匹配,如果相等则匹配下一个字符,直到出现不相等的情况,此时我们会简单的丢弃前面的匹配信息,然后从T[1]

W[0]匹配,循环进行,直到主串结束,或者出现匹配的情况。这种简单的丢弃前面的匹配信息,造成了极大的浪费和低下的匹配效率。
然而,在KMP算法中,对于每一个模式串我们会事先计算出模式串的内部匹配信息,在匹配失败时最大的移动模式串,以减少匹配次数。
比如,在简单的一次匹配失败后,我们会想将模式串尽量的右移和主串进行匹配。右移的距离在KMP算法中是如此计算的:在已经匹配的模式串子串中,找出最长的相同的前缀和后缀,然后移动使它们重叠。
在第一次匹配过程中
T:
a
b
a
c
a
a
b
a
c
a
b
a
c
a
b
a
a
b
b
W:
a
b
a
c
ab
在T[5]与W[5]出现了不匹配,而T[0]~T[4]是匹配的,现在T[0]~T[4]就是上文中说的已经匹配的模式串子串,现在移动找出最长的相同的前缀和后缀并使他们重叠:
T:
a
b
a
c
aab
a
c
a
b
a
c
a
b
a
a
b
b
W:
a
b
a
c
ab
然后在从上次匹配失败的地方进行匹配,这样就减少了匹配次数,增加了效率。
然而,有些同学可能会问了,每次都要计算最长的相同的前缀会不会反而浪费了时间,对于模式串来说,我们会提前计算出每个匹配失败的位置应该移动的距离,花费的时间是常数时间。比如:
j012345W[j]abacabF(j)001012当W[j]与T[i]不匹配的时候,设置j
=
F(j-1)
文献中,朱洪对KMP算法作了修改,他修改了KMP算法中的next函数,即求next函数时不但要求W[1,next(j)-1]=W[j-(next(j)-1),j-1],而且要求W[next(j)]<>W[j],他记修改后的next函数为newnext。显然在模式串字符重复高的情况下,朱洪的KMP算法比KMP算法更加有效。
以下给出朱洪的改进KMP算法和next函数和newnext函数的计算算法。

热点内容
安卓手机壁纸如何更换成动态壁纸 发布:2025-01-20 01:40:27 浏览:705
安卓微信签名在哪里修改 发布:2025-01-20 01:25:31 浏览:109
安卓电脑管家怎么恢复出厂设置 发布:2025-01-20 01:24:06 浏览:313
qt编译sqlite库 发布:2025-01-20 01:22:30 浏览:525
360摄像头存储设置 发布:2025-01-20 01:16:01 浏览:538
js防缓存 发布:2025-01-20 01:15:47 浏览:495
编程生日卡 发布:2025-01-20 01:15:14 浏览:206
android备忘录源码 发布:2025-01-20 01:06:32 浏览:455
怎么禁用aspx缓存 发布:2025-01-20 01:00:50 浏览:688
我的手机如何恢复安卓系统 发布:2025-01-20 00:55:48 浏览:367