当前位置:首页 » 操作系统 » linuxio模型

linuxio模型

发布时间: 2024-01-10 22:20:46

① Linux系统I/O模型及select、poll、epoll原理和应用

理解Linux的IO模型之前,首先要了解一些基本概念,才能理解这些IO模型设计的依据

操作系统使用虚拟内存来映射物理内存,对于32位的操作系统来说,虚拟地址空间为4G(2^32)。操作系统的核心是内核,为了保护用户进程不能直接操作内核,保证内核安全,操作系统将虚拟地址空间划分为内核空间和用户空间。内核可以访问全部的地址空间,拥有访问底层硬件设备的权限,普通的应用程序需要访问硬件设备必须通过 系统调用 来实现。

对于Linux系统来说,将虚拟内存的最高1G字节的空间作为内核空间仅供内核使用,低3G字节的空间供用户进程使用,称为用户空间。

又被称为标准I/O,大多数文件系统的默认I/O都是缓存I/O。在Linux系统的缓存I/O机制中,操作系统会将I/O的数据缓存在页缓存(内存)中,也就是数据先被拷贝到内核的缓冲区(内核地址空间),然后才会从内核缓冲区拷贝到应用程序的缓冲区(用户地址空间)。

这种方式很明显的缺点就是数据传输过程中需要再应用程序地址空间和内核空间进行多次数据拷贝操作,这些操作带来的CPU以及内存的开销是非常大的。

由于Linux系统采用的缓存I/O模式,对于一次I/O访问,以读操作举例,数据先会被拷贝到内核缓冲区,然后才会从内核缓冲区拷贝到应用程序的缓存区,当一个read系统调用发生的时候,会经历两个阶段:

正是因为这两个状态,Linux系统才产生了多种不同的网络I/O模式的方案

Linux系统默认情况下所有socke都是blocking的,一个读操作流程如下:

以UDP socket为例,当用户进程调用了recvfrom系统调用,如果数据还没准备好,应用进程被阻塞,内核直到数据到来且将数据从内核缓冲区拷贝到了应用进程缓冲区,然后向用户进程返回结果,用户进程才解除block状态,重新运行起来。

阻塞模行下只是阻塞了当前的应用进程,其他进程还可以执行,不消耗CPU时间,CPU的利用率较高。

Linux可以设置socket为非阻塞的,非阻塞模式下执行一个读操作流程如下:

当用户进程发出recvfrom系统调用时,如果kernel中的数据还没准备好,recvfrom会立即返回一个error结果,不会阻塞用户进程,用户进程收到error时知道数据还没准备好,过一会再调用recvfrom,直到kernel中的数据准备好了,内核就立即将数据拷贝到用户内存然后返回ok,这个过程需要用户进程去轮询内核数据是否准备好。

非阻塞模型下由于要处理更多的系统调用,因此CPU利用率比较低。

应用进程使用sigaction系统调用,内核立即返回,等到kernel数据准备好时会给用户进程发送一个信号,告诉用户进程可以进行IO操作了,然后用户进程再调用IO系统调用如recvfrom,将数据从内核缓冲区拷贝到应用进程。流程如下:

相比于轮询的方式,不需要多次系统调用轮询,信号驱动IO的CPU利用率更高。

异步IO模型与其他模型最大的区别是,异步IO在系统调用返回的时候所有操作都已经完成,应用进程既不需要等待数据准备,也不需要在数据到来后等待数据从内核缓冲区拷贝到用户缓冲区,流程如下:

在数据拷贝完成后,kernel会给用户进程发送一个信号告诉其read操作完成了。

是用select、poll等待数据,可以等待多个socket中的任一个变为可读,这一过程会被阻塞,当某个套接字数据到来时返回,之后再用recvfrom系统调用把数据从内核缓存区复制到用户进程,流程如下:

流程类似阻塞IO,甚至比阻塞IO更差,多使用了一个系统调用,但是IO多路复用最大的特点是让单个进程能同时处理多个IO事件的能力,又被称为事件驱动IO,相比于多线程模型,IO复用模型不需要线程的创建、切换、销毁,系统开销更小,适合高并发的场景。

select是IO多路复用模型的一种实现,当select函数返回后可以通过轮询fdset来找到就绪的socket。

优点是几乎所有平台都支持,缺点在于能够监听的fd数量有限,Linux系统上一般为1024,是写死在宏定义中的,要修改需要重新编译内核。而且每次都要把所有的fd在用户空间和内核空间拷贝,这个操作是比较耗时的。

poll和select基本相同,不同的是poll没有最大fd数量限制(实际也会受到物理资源的限制,因为系统的fd数量是有限的),而且提供了更多的时间类型。

总结:select和poll都需要在返回后通过轮询的方式检查就绪的socket,事实上同时连的大量socket在一个时刻只有很少的处于就绪状态,因此随着监视的描述符数量的变多,其性能也会逐渐下降。

epoll是select和poll的改进版本,更加灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的只需一次。

epoll_create()用来创建一个epoll句柄。
epoll_ctl() 用于向内核注册新的描述符或者是改变某个文件描述符的状态。已注册的描述符在内核中会被维护在一棵红黑树上,通过回调函数内核会将 I/O 准备好的描述符加入到一个就绪链表中管理。
epoll_wait() 可以从就绪链表中得到事件完成的描述符,因此进程不需要通过轮询来获得事件完成的描述符。

当epoll_wait检测到描述符IO事件发生并且通知给应用程序时,应用程序可以不立即处理该事件,下次调用epoll_wait还会再次通知该事件,支持block和nonblocking socket。

当epoll_wait检测到描述符IO事件发生并且通知给应用程序时,应用程序需要立即处理该事件,如果不立即处理,下次调用epoll_wait不会再次通知该事件。

ET模式在很大程度上减少了epoll事件被重复触发的次数,因此效率要比LT模式高。epoll工作在ET模式的时候,必须使用nonblocking socket,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。

【segmentfault】 Linux IO模式及 select、poll、epoll详解
【GitHub】 CyC2018/CS-Notes

② 请比较Linux与Windows在网络编程方面的特点

找了一段,大致涉及到了您的问题:

一、socket的模式
socket一般有两种模式:同步和异步(windows网络编程技术中也可叫锁定和非锁定,Linux网络编程叫阻塞和非阻塞)。

二、socket的类型

socket一般有三种类型,基于TCP的流式套接字,基于UDP的数据报套接字和原始套接字。

三、socket的IO模型

socket
的IO模型是编程中使用socket两种模式的策略,它们适用的场合不同,在不同的操作系统上支持的模型也不同,例如windows从NT版本才开始支持
完成端口模型。Linux和Windows所支持的模型也有区别,当然也有相同的地方,可能叫法不一样,但大致思路是一样的,下面分别介绍windows
和Linux的IO模型

1、 Windows下的套接字IO模型:

A、 Select(选择)模型
用于同步socket的状态检测模型,又叫(Linux)多路复用,可以同时检测多个socket的状态

B、 WSAAsyncSelect(异步选择)模型
用于异步socket的异步事件设置,它是基于Windows消息的模型,必须先打开一个窗口,然后把窗口和socket的消息绑定,这样,在socket有消息通知时,操作系统便通知窗口,然后在窗口进行处理。

C、 WSAEventSelect(异步事件)模型

于异步socket的异步事件,它是基于网络事件的模型,先使用CreateEvent创建一个事件,然后使用WSAEventSelect进行事件绑
定,然后可以使用WaitForMultipleObject(Event)进行事件监听,可以同时监听多个事件,不光是socket的,比如可以监听使
用CreateWaitableTimer创建的Timer等。

D、 重叠IO模型

于异步socket,在创建socket时需要在创建函数WSASocket中使用WSA_FLAG_OVERLAPPED标志,然后在投递IO请求的时
候将一个Overlapped结构体指针赋给投递函数,可以使用WSAWaitForMultipleObject来监听事件,然后使用
WSAGetOverlappedResult来获取IO的状态,也可以在Overlapped结构体中使用完成例程来处理,即在投递函数中把完成例程赋
给投递函数。

E、 完成端口模型

是迄今为止最复杂的一种IO模型,当应用程序需要管理众多的套接字并且希望随着系统内安装的CPU数目的增多,应用程序的性能也可以线性增加,就可以使用
这种模型,它的原理是每个CPU可以单独负责一个线程的执行,避免线程的频繁切换。使用这种模型往往可以达到最佳的系统性能。

先需要使用CreateIOCompletePort来创建完成端口,然后将IO句柄和此端口绑定,绑定也是使用此函数,当然也可以一次完成。接着是创建
工作者线程,工作者线程会使用GetQueuedCompletionStatus进入完成端口维护的线程池,当有完成事件时,会激活一个线程。

2、 Linux下的IO模型

A、阻塞IO

B、非阻塞IO

C、IO多路复用(选择)

D、信号驱动
用于异步socket,首先设定信号处理函数,然后使用fcntl函数设定socket的拥有者,像windows下使用WSAAsncSelect设定socket的窗口一样。使用这种模型,当内核操作可以被操作的时候通知我们的应用程序

E、异步IO
当内核在所有操作完成后才会通知应用程序

四、socket的一些使用上的优化

A、缓冲区的优化,可以考虑让应用程序使用比较小的缓冲区,但同时使用多个WSARecv

B、使用socket选项SO_SNDBUF和SO_RCVBUF设置socket缓冲区大小,如果设为0,操作体系统会使用应用程序的缓冲区,这样避免了从系统缓冲区向用户区复制的开销

五、注意这些IO模型有些不光是针对socket的,其他的IO操作也可以使用,最常用使用的是WriteFile,ReadFile等函数。

其它查考网址:
http://blog.163.com/tianle_han/blog/static/6617826200821522743948/
http://blog.csdn.net/yibulianhua/article/details/5374317

③ Linux异步IO

Linux中最常用的IO模型是同步IO,在这个模型中,当请求发出之后,应用程序就会阻塞,直到请求满足条件为止。这是一种很好的解决方案,调用应用程序在等待IO完成的时候不需要占用CPU,但是在很多场景中,IO请求可能需要和CPU消耗交叠,以充分利用CPU和IO提高吞吐率。

下图描绘了异步IO的时序,应用程序发起IO操作后,直接开始执行,并不等待IO结束,它要么过一段时间来查询之前的IO请求完成情况,要么IO请求完成了会自动被调用与IO完成绑定的回调函数。

Linux的AIO有多种实现,其中一种实现是在用户空间的glibc库中实现的,本质上是借用了多线程模型,用开启的新的线程以同步的方式做IO,新的AIO辅助线程与发起AIO的线程以pthread_cond_signal()的形式进行线程间的同步,glibc的AIO主要包含以下函数:

1、aio_read()
aio_read()函数请求对一个有效的文件描述符进行异步读操作。这个文件描述符可以代表一个文件、套接字,甚至管道,aio_read()函数原型如下:

aio_read()函数在请求进行排队之后就会立即返回(尽管读操作并未完成),如果执行成功就返回0,如果出现错误就返回-1。参数aiocb(AIO I/O Control Block)结构体包含了传输的所有信息,以及为AIO操作准备的用户空间缓冲区。在产生IO完成通知时,aiocb结构就被用来唯一标识所完成的IO操作。

2.aio_write()
aio_write()函数用来请求一个异步写操作。函数原型如下:

aio_write()函数会立即返回,并且它的请求以及被排队(成功时返回值为0,失败时返回值为-1)

3.aio_error()

aio_error()函数被用来确定请求的状态,其原型如下:

该函数的返回:

4.aio_return()
异步IO和同步阻塞IO方式之间有一个区别就是不能立即访问函数的返回状态,因为异步IO没有阻塞在read()调用上。在标准的同步阻塞read()调用中,返回状态是在该函数返回时提供的。
但是在异步IO中,我们要用aio_return()函数,原型如下:

只有在aio_error()调用确定请求已经完成(可能成功、也可能发生了错误)之后,才会调用这个函数,aio_return()的返回值就等价于同步情况中read()或者write系统调用的返回值。

5.aio_suspend()
用户可以用该函数阻塞调用进程,直到异步请求完成为止,调用者提供了一个aiocb引用列表,其中任何一个完成都会导致aio_suspend()返回。函数原型如下:

6.aio_cancel()
该函数允许用户取消对某个文件描述符执行的一个或所以IO请求。

要取消一个请求,用户需要提供文件描述符和aiocb指针,如果这个请求被成功取消了,那么这个函数就会返回AIO_CANCELED。如果请求完成了,就会返回AIO_NOTCANCELED。

7.lio_listio()
lio_listio()函数可用于同时发起多个传输。这个函数非常重要,它使得用户可以在一个系统调用中启动大量的IO操作,原型如下:

mode参数可以是LIO_WAIT或者是LIO_NOWAIT。LIO_WAIT会阻塞这个调用,直到所有的IO都返回为止,若是LIO_NOWAIT模型,在IO操作完成排队之后,该函数就会返回。list是一个aiocb的列表,最大元素的个数是由nent定义的。如果list的元素为null,lio_listio()会将其忽略。

热点内容
怎么用安卓手机查苹果的序列号 发布:2024-11-29 06:21:08 浏览:507
r11s原始密码是多少 发布:2024-11-29 05:52:20 浏览:79
c语言枚举法 发布:2024-11-29 05:50:58 浏览:125
大数据系统如何配置 发布:2024-11-29 05:48:44 浏览:89
连战访问西安小学 发布:2024-11-29 05:45:03 浏览:316
怎么编译原生安卓手机 发布:2024-11-29 05:44:28 浏览:193
java代码编译java文件 发布:2024-11-29 05:44:27 浏览:208
如何部署远程服务器 发布:2024-11-29 05:34:37 浏览:523
红米系统存储与手机存储 发布:2024-11-29 05:33:55 浏览:198
qt反编译工具 发布:2024-11-29 05:29:31 浏览:480