当前位置:首页 » 操作系统 » 粒子群算法研究及应用

粒子群算法研究及应用

发布时间: 2023-12-03 09:26:39

㈠ 粒子群优化算法

姓名:杨晶晶  学号:21011210420  学院:通信工程学院

【嵌牛导读】

传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的,而粒子算法主要是解决一些多目标优化问题的(例如机械零件的多目标设计优化),其优点是容易实现,精度高,收敛速度快。

【嵌牛鼻子】粒子群算法的概念、公式、调参以及与遗传算法的比较。

【嵌牛提问】什么是粒子群算法?它的计算流程是什么?与遗传算法相比呢?

【嵌牛正文】

1. 概念

        粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation),源于对鸟群捕食的行为研究。

        粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。

        PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

2. 算法

2.1 问题抽象

        鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子i在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值),这个可以看作是粒子同伴的经验。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

2.2 更新规则

      PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

      公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

      以上面两个公式为基础,形成了PSO的标准形式。

      公式(2)和 公式(3)被视为标准PSO算法。

2.3 标准PSO算法流程

    标准PSO算法的流程:

    1)初始化一群微粒(群体规模为N),包括随机位置和速度;

    2)评价每个微粒的适应度;

    3)对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;

    4)对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;

    5)根据公式(2)、(3)调整微粒速度和位置;

    6)未达到结束条件则转第2)步。

        迭代终止条件根据具体问题一般选为最大迭代次数Gk或(和)微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

      公式(2)和(3)中pbest和gbest分别表示微粒群的局部和全局最优位置。

    当C1=0时,则粒子没有了认知能力,变为只有社会的模型(social-only):

被称为全局PSO算法。粒子有扩展搜索空间的能力,具有较快的收敛速度,但由于缺少局部搜索,对于复杂问题

比标准PSO 更易陷入局部最优。

    当C2=0时,则粒子之间没有社会信息,模型变为只有认知(cognition-only)模型:

      被称为局部PSO算法。由于个体之间没有信息的交流,整个群体相当于多个粒子进行盲目的随机搜索,收敛速度慢,因而得到最优解的可能性小。

2.4 参数分析

        参数:群体规模N,惯性因子 ,学习因子c1和c2,最大速度Vmax,最大迭代次数Gk。

        群体规模N:一般取20~40,对较难或特定类别的问题可以取到100~200。

        最大速度Vmax:决定当前位置与最好位置之间的区域的分辨率(或精度)。如果太快,则粒子有可能越过极小点;如果太慢,则粒子不能在局部极小点之外进行足够的探索,会陷入到局部极值区域内。这种限制可以达到防止计算溢出、决定问题空间搜索的粒度的目的。

        权重因子:包括惯性因子和学习因子c1和c2。使粒子保持着运动惯性,使其具有扩展搜索空间的趋势,有能力探索新的区域。c1和c2代表将每个粒子推向pbest和gbest位置的统计加速项的权值。较低的值允许粒子在被拉回之前可以在目标区域外徘徊,较高的值导致粒子突然地冲向或越过目标区域。

        参数设置:

        1)如果令c1=c2=0,粒子将一直以当前速度的飞行,直到边界。很难找到最优解。

        2)如果=0,则速度只取决于当前位置和历史最好位置,速度本身没有记忆性。假设一个粒子处在全局最好位置,它将保持静止,其他粒子则飞向它的最好位置和全局最好位置的加权中心。粒子将收缩到当前全局最好位置。在加上第一部分后,粒子有扩展搜索空间的趋势,这也使得的作用表现为针对不同的搜索问题,调整算法的全局和局部搜索能力的平衡。较大时,具有较强的全局搜索能力;较小时,具有较强的局部搜索能力。

        3)通常设c1=c2=2。Suganthan的实验表明:c1和c2为常数时可以得到较好的解,但不一定必须等于2。Clerc引入收敛因子(constriction factor) K来保证收敛性。

      通常取为4.1,则K=0.729.实验表明,与使用惯性权重的PSO算法相比,使用收敛因子的PSO有更快的收敛速度。其实只要恰当的选取和c1、c2,两种算法是一样的。因此使用收敛因子的PSO可以看作使用惯性权重PSO的特例。

        恰当的选取算法的参数值可以改善算法的性能。

3. PSO与其它算法的比较

3.1 遗传算法和PSO的比较

  1)共性:

  (1)都属于仿生算法。

  (2)都属于全局优化方法。

  (3)都属于随机搜索算法。

  (4)都隐含并行性。

  (5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。

  (6)对高维复杂问题,往往会遇到早熟收敛和收敛 性能差的缺点,都无法保证收敛到最优点。

    2)差异:   

    (1)PSO有记忆,好的解的知识所有粒子都保 存,而GA(Genetic Algorithm),以前的知识随着种群的改变被改变。

    (2)PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单共享项信息机制。而GA中,染色体之间相互共享信息,使得整个种群都向最优区域移动。

    (3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。

    (4)应用于人工神经网络(ANN)

    GA可以用来研究NN的三个方面:网络连接权重、网络结构、学习算法。优势在于可处理传统方法不能处理的问题,例如不可导的节点传递函数或没有梯度信息。

    GA缺点:在某些问题上性能不是特别好;网络权重的编码和遗传算子的选择有时较麻烦。

    已有利用PSO来进行神经网络训练。研究表明PSO是一种很有潜力的神经网络算法。速度较快且有较好的结果。且没有遗传算法碰到的问题。

㈡ 粒子群算法

粒子群算法(particle swarm optimization,PSO)是计算智能领域中的一种生物启发式方法,属于群体智能优化算法的一种,常见的群体智能优化算法主要有如下几类:

除了上述几种常见的群体智能算法以外,还有一些并不是广泛应用的群体智能算法,比如萤火虫算法、布谷鸟算法、蝙蝠算法以及磷虾群算法等等。

而其中的粒子群优化算法(PSO)源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有限的策略就是搜寻当前距离食物最近的鸟的周围。

设想这样一个场景:一群鸟在随机的搜索食物。在这个区域里只有一块食物,所有的鸟都不知道食物在哪。但是它们知道自己当前的位置距离食物还有多远。那么找到食物的最优策略是什么?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

Step1:确定一个粒子的运动状态是利用位置和速度两个参数描述的,因此初始化的也是这两个参数;
Step2:每次搜寻的结果(函数值)即为粒子适应度,然后记录每个粒子的个体历史最优位置和群体的历史最优位置;
Step3:个体历史最优位置和群体的历史最优位置相当于产生了两个力,结合粒子本身的惯性共同影响粒子的运动状态,由此来更新粒子的位置和速度。

位置和速度的初始化即在位置和速度限制内随机生成一个N x d 的矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50x1的数据矩阵。

此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。

粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。

每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式:

每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。

粒子群算法求平方和函数最小值,由于没有特意指定函数自变量量纲,不进行数据归一化。

㈢ 什么是粒子群算法

粒子群算法介绍(摘自http://blog.sina.com.cn/newtech)
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较着名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.

粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .

粒子群算法

1. 引言

粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究

PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍

同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域

2. 背景: 人工生命

"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容

1. 研究如何利用计算技术研究生物现象
2. 研究如何利用生物技术研究计算问题

我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.

现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为

例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.

在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.

粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.

3. 算法介绍

如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索

PSO 初始化为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。

在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)

v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.

程序的伪代码如下

For each particle
____Initialize particle
END

Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End

____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained

在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax

4. 遗传算法和 PSO 的比较

大多数演化计算技术都是用同样的过程
1. 种群随机初始化
2. 对种群内的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关
3. 种群根据适应值进行复制
4. 如果终止条件满足的话,就停止,否则转步骤2

从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解

但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。

与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解

5. 人工神经网络 和 PSO

人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。

演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。

不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值

演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦

最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题

这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。

我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

6. PSO的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数
PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误

PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置

粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200

粒子的长度: 这是由优化问题决定, 就是问题解的长度

粒子的范围: 由优化问题决定,每一维可是设定不同的范围

Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20

学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间

中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.

全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.

另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)

㈣ 粒子群算法及应用的目录

前言
第1章绪论
1.1最优化问题
1.1.1函数优化问题与组合优化问题
1.1.2优化算法的发展
1.2几种常见的启发式算法
1.2.1遗传算法
1.2.2模拟退火算法
1.2.3人工神经网络
1.3群体智能算法
1.3.1蚁群算法
1.3.2粒子群算法
1.4粒子群算法的发展与应用
1.4.1粒子群算法的发展
1.4.2粒子群算法的应用
参考文献
第2章基本粒子群算法
2.1引言
2.2基本粒子群算法
2.3带惯性权重的粒子群算法
2.3.1一般的惯性因子设计
2.3.2基于模糊系统的惯性因子的动态调整
2.4带收缩因子的粒子群算法
2.5与其他算法的异同
2.5.1基于梯度的优化算法
2.5.2进化计算方法
2.5.3蚁群算法
2.6复杂度
2.6.1复杂度的判定标准和基本概念
2.6.2时空复杂度分析
参考文献
第3章粒子群算法的分析
3.1一维空间轨迹
3.1.1粒子群系统的简化
3.1.2单个粒子的轨迹
3.2多维空间轨迹
3.2.1区域特性
3.2.2步长分析
3.3代数分析
3.3.1系统简化
3.3.2代数观点
3.4解析分析
3.5差分方程分析
3.5.1粒子运动轨迹的稳定性分析
3.5.2粒子运动轨迹的影响因素
3.5.3粒子运动轨迹与算法收敛的关系
参考文献
第4章改进的粒子群算法及分析
4.1离散粒子群优化算法
4.1.1二进制离散粒子群优化算法
4.1.2改进的二值离散粒子群优化算法
4.1.3离散量子粒子群优化算法
4.1.4模糊离散粒子群优化算法
4.2小生境粒子群优化算法
4.2.1小生境粒子群算法
4.2.2基于聚类的小生境粒子群算法
4.2.3种群小生境粒子群算法
4.3混合粒子群优化算法
4.3.1基于遗传思想改进粒子群算法
4.3.2混沌粒子群优化算法
4.3.3基于模拟退火的粒子群优化算法
4.4其他粒子群改进算法
4.4.1子矢量
4.4.2子矢量的更新过程
4.4.3参数分析
参考文献
第5章在函数优化中的应用
5.1基准测试函数
5.2优化测试函数的分类
5.2.1无约束优化测试函数
5.2.2有约束优化测试函数
5.2.3极大极小优化测试函数
5.2.4多目标优化测试函数
5.3智能单粒子算法优化性能
参考文献
第6章在图像压缩中的应用
6.1矢量量化
6.2常用的几种矢量量化方法
6.2.1K-means算法
6.2.2模糊K-means算法
6.2.3模糊矢量量化算法
6.2.4FRLVQ算法
6.2.5FRLVQ-FVQ算法
6.3粒子对算法
6.3.1粒子结构
6.3.2与传统粒子群算法的差异
6.3.3码书更新过程
6.4算法比较
参考文献
第7章在基因聚类中的应用
7.1基因芯片技术简介
7.2基因表达数据聚类分析
7.2.1基因表达数据分析
7.2.2聚类分析
7.3基因表达数据聚类分析
7.3.1聚类算法的分类
7.3.2K-means聚类
7.3.3层次聚类
7.3.4自组织映射
7.3.5改进型聚类算法
7.4粒子对算法在基因聚类中的应用
7.4.1粒子结构
7.4.2聚类分析
7.4.3聚类结果
7.5基因聚类分析结果的评价标准
参考文献
第8章粒子群算法应用综述
8.1优化问题求解
8.1.1约束优化问题求解
8.1.2规划问题求解
8.1.3离散空间组合优化问题求解
8.2工程设计与优化领域
8.2.1电路及滤波器设计
8.2.2神经网络训练
8.2.3控制器设计与优化
8.2.4RBF网络优化训练举例
8.3电力系统领域
8.3.1电容器优化配置
8.3.2最优潮流计算与无功优化控制
8.3.3机组优化组合问题
8.3.4电网扩展计划
8.3.5电力系统恢复
8.3.6负荷经济分配及调度
8.3.7状态估计
8.3.8参数辨识
8.3.9优化设计
8.3.10OPF问题举例
8.4机器人控制领域
8.4.1机器人控制与协调
8.4.2移动机器人路径规划
8.5交通运输领域
8.5.1车辆路径问题
8.5.2VRP问题举例
8.5.3交通控制
8.6通信领域
8.6.1路由选择及移动通信基站布置优化
8.6.2天线阵列控制
8.6.3偏振模色散补偿
8.7计算机领域
8.7.1任务分配问题
8.7.2数据分类
8.7.3图像处理
8.8工业生产优化领域
8.8.1机械领域
8.8.2化工领域
8.9生物医学领域
8.10电磁学领域
参考文献
附录A粒子对算法应用于图像矢量量化的源代码
附录B智能单粒子优化算法求解函数的源代码
附录C23个基准测试函数
附录D基因聚类常用软件
……

㈤ 粒子群算法及其应用

既然是数学系的,可以考虑从粒子群算法的收敛性证明和分布性检验方面着手,偏理论性的证明,这方面比较欠缺,有点类似于高楼地基不稳,大家却在上面继续垒
可以参考遗传算法的模式定理或隐性并行性定理等,如果能够提出关于粒子群算法的定理,应该足够具有挑战性了
还有就是对粒子群算法进行算法融合或改进,然后针对改进的算法进行测试,检验其在函数优化等方面的效能。

㈥ 什么叫粒子群

粒子群优化算法(PSO)是一种进化计算技术(evolutionarycomputation),有Eberhart博士和kennedy博士发明的一种新的全局优化进化算法。源于对鸟群捕食的行为研究。PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍.
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域

热点内容
机加工的编程 发布:2024-11-30 00:31:19 浏览:726
坦克世界电脑什么配置 发布:2024-11-30 00:30:41 浏览:316
如何在手机设置上找到网络的密码 发布:2024-11-30 00:18:29 浏览:413
和鹰加密锁 发布:2024-11-30 00:17:17 浏览:555
C语言舞会 发布:2024-11-30 00:15:44 浏览:377
java下载我的世界 发布:2024-11-30 00:11:08 浏览:11
华三配置器升级失败怎么回事 发布:2024-11-30 00:09:23 浏览:841
汽车空调压缩机寿命 发布:2024-11-30 00:06:04 浏览:566
电脑网络波动异常与服务器失去连接 发布:2024-11-29 23:43:19 浏览:246
个人电脑与服务器架构类似 发布:2024-11-29 23:40:59 浏览:704