算法五大思想
❶ 算法思想可以简单说一下吗
业界公认的常用算法思想有8种,分别是枚举、递推、递归、分治、贪心、试探法、动态迭代和模拟。当然8种只是一个大概的划分,是一个“仁者见仁、智者见智”的问题。
枚举算法思想
枚举算法思想的最大特点是,在面对任何问题时它会去尝试每一种解决方法。在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这个结论是可靠的,这种归纳方法叫作枚举法。
枚举算法基础
枚举算法的思想是:将问题的所有可能的答案一一列举,然后根据条件判断此答案是否合适,保留合适的,丢弃不合适的。在C语言中,枚举算法一般使用while循环实现。使用枚举算法解题的基本思路如下。
① 确定枚举对象、枚举范围和判定条件。
② 逐一列举可能的解,验证每个解是否是问题的解。
枚举算法一般按照如下3个步骤进行。
① 题解的可能范围,不能遗漏任何一个真正解,也要避免有重复。
② 判断是否是真正解的方法。
③ 使可能解的范围降至最小,以便提高解决问题的效率。
❷ 配电网的五大算法是什么
(1)关联表矩阵表示法,联表矩阵,设备编号来分析设备的连接关系,得到网络的拓扑。其中建立了两个表矩阵,N行13列的结点描述矩阵和M行16列的支路描述矩阵。
(2)网基矩阵表示法:该方法是基于图论的表示方法。其基本思想是:配电网络是一个变结构的网络,网络由结点和弧构成。
(3)结点消去法:该方法即通过消去中间节点,降低邻接矩阵的阶数,减少计算量和计算冗余度,提高计算速度。并且祥泰电气提示这种算法的基本思想是忽略掉中间结点,只分析对拓扑结构具有重要影响作用的结点之间的连通状态。
(4)树搜索法:在树搜索中,将母线看作图的顶点,将支路看作是图的边。通常对配电网来说,开关变位造成网络结构发生重大变化的情况是很少发生的。
(5)离散处理法:电力系统既含连续动态,也含离散动态。开关状态变化引起电力系统网络结构变化,是一种典型的离散事件动态过程。
❸ 程序员都应该精通的六种算法,你会了吗
对于一名优秀的程序员来说,面对一个项目的需求的时候,一定会在脑海里浮现出最适合解决这个问题的方法是什么,选对了算法,就会起到事半功倍的效果,反之,则可能会使程序运行效率低下,还容易出bug。因此,熟悉掌握常用的算法,是对于一个优秀程序员最基本的要求。
那么,常用的算法都有哪些呢?一般来讲,在我们日常工作中涉及到的算法,通常分为以下几个类型:分治、贪心、迭代、枚举、回溯、动态规划。下面我们来一一介绍这几种算法。
一、分治算法
分治算法,顾名思义,是将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治算法一般分为三个部分:分解问题、解决问题、合并解。
分治算法适用于那些问题的规模缩小到一定程度就可以解决、并且各子问题之间相互独立,求出来的解可以合并为该问题的解的情况。
典型例子比如求解一个无序数组中的最大值,即可以采用分治算法,示例如下:
def pidAndConquer(arr,leftIndex,rightIndex):
if(rightIndex==leftIndex+1 || rightIndex==leftIndex){
return Math.max(arr[leftIndex],arr[rightIndex]);
}
int mid=(leftIndex+rightIndex)/2;
int leftMax=pidAndConquer(arr,leftIndex,mid);
int rightMax=pidAndConquer(arr,mid,rightIndex);
return Math.max(leftMax,rightMax);
二、贪心算法
贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法的基本思路是把问题分成若干个子问题,然后对每个子问题求解,得到子问题的局部最优解,最后再把子问题的最优解合并成原问题的一个解。这里要注意一点就是贪心算法得到的不一定是全局最优解。这一缺陷导致了贪心算法的适用范围较少,更大的用途在于平衡算法效率和最终结果应用,类似于:反正就走这么多步,肯定给你一个值,至于是不是最优的,那我就管不了了。就好像去菜市场买几样菜,可以经过反复比价之后再买,或者是看到有卖的不管三七二十一先买了,总之最终结果是菜能买回来,但搞不好多花了几块钱。
典型例子比如部分背包问题:有n个物体,第i个物体的重量为Wi,价值为Vi,在总重量不超过C的情况下让总价值尽量高。每一个物体可以只取走一部分,价值和重量按比例计算。
贪心策略就是,每次都先拿性价比高的,判断不超过C。
三、迭代算法
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程。迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。最终得到问题的结果。
迭代算法适用于那些每步输入参数变量一定,前值可以作为下一步输入参数的问题。
典型例子比如说,用迭代算法计算斐波那契数列。
四、枚举算法
枚举算法是我们在日常中使用到的最多的一个算法,它的核心思想就是:枚举所有的可能。枚举法的本质就是从所有候选答案中去搜索正确地解。
枚举算法适用于候选答案数量一定的情况。
典型例子包括鸡钱问题,有公鸡5,母鸡3,三小鸡1,求m钱n鸡的所有可能解。可以采用一个三重循环将所有情况枚举出来。代码如下:
五、回溯算法
回溯算法是一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
典型例子是8皇后算法。在8 8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问一共有多少种摆法。
回溯法是求解皇后问题最经典的方法。算法的思想在于如果一个皇后选定了位置,那么下一个皇后的位置便被限制住了,下一个皇后需要一直找直到找到安全位置,如果没有找到,那么便要回溯到上一个皇后,那么上一个皇后的位置就要改变,这样一直递归直到所有的情况都被举出。
六、动态规划算法
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
动态规划算法适用于当某阶段状态给定以后,在这阶段以后的过程的发展不受这段以前各段状态的影响,即无后效性的问题。
典型例子比如说背包问题,给定背包容量及物品重量和价值,要求背包装的物品价值最大。
❹ 算法的五个重要特性
算法的五大特性:
1、输入: 算法具有0个或多个输入。
2、输出: 算法至少有1个或多个输出。
3、有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每- 一个步骤可以在可接受的时间内完成。
4、确定性:算法中的每一步都有确定的含义,不会出现二义性。
5、可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完。
拓展资料:
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
❺ 五大基本算法——回溯法
回溯法是一种选优搜索法(试探法)。
基本思想:将问题P的状态空间E表示成一棵高为n的带全有序树T,把求解问题简化为搜索树T。搜索过程采用 深度优先搜索 。搜索到某一结点时判断该结点是否包含原问题的解,如果包含则继续往下搜索,如果不包含则向祖先回溯。
通俗来说,就是利用一个树结构来表示解空间,然后从树的根开始深度优先遍历该树,到不满足要求的叶子结点时向上回溯继续遍历。
几个结点:
扩展结点:一个正在产生子结点的结点称为扩展结点
活结点:一个自身已生成但未全部生成子结点的结点
死结点:一个所有子结点已全部生成的结点
1、分析问题,定义问题解空间。
2、根据解空间,确定解空间结构,得 搜索树 。
3、从根节点开始深度优先搜索解空间(利用 剪枝 避免无效搜索)。
4、递归搜索,直到找到所要求的的解。
1、子集树
当问题是:从n个元素的集合S中找出满足某种性质的子集时,用子集树。
子集树必然是一个二叉树。常见问题:0/1背包问题、装载问题。
遍历子集树时间复杂度:O(2^n)
2、排列树
当问题是:确定n个元素满足某种排列时,用排列数。常见问题:TSP旅行商问题,N皇后问题。
遍历排列树时间复杂度:O(n!)
通俗地讲,结合Java集合的概念,选择哪种树其实就是看最后所得结果是放入一个List(有序)里,还是放入一个Set(无序)里。
剪枝函数能极大提高搜索效率,遍历解空间树时,对于不满足条件的分支进行剪枝,因为这些分支一定不会在最后所求解中。
常见剪枝函数:
约束函数(对解加入约束条件)、限界函数(对解进行上界或下界的限定)
满足约束函数的解才是可行解。
1、0/1背包问题
2、TSP旅行商问题
3、最优装载问题
4、N-皇后问题
具体问题可网络详细内容。
❻ 算法是什么
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令。
算法代表着用系统的方法描述解决问题的策略机制,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输察并腊出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间,空间或效率来完成同样的任务。
算法中的指令描述的是一个计算。当其运行时能从一个初始状态和初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态,一个状态到另一个状态的转移不一定是确定的。
算法思想:
1、递推法
递推是序列计算机中的一种常用算法,它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。其思想是把一个复杂蔽卜的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。
2、递归法
程序调用自身的编程技巧称为递归,一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法。它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需败滑要的多次重复计算。
以上内容参考:网络—算法
❼ 计算机算法必须具备哪5个特性
1、有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。
2、确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。
3、有零个或多个输入性。所谓输入是指在执行算法是需要从外界取得必要的信息。
4、有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。
5、有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。
(7)算法五大思想扩展阅读
计算机算法的产生背景:
欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。
因为查尔斯·巴贝奇未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procere"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。