当前位置:首页 » 操作系统 » 禁忌搜索算法代码

禁忌搜索算法代码

发布时间: 2023-11-27 03:06:26

⑴ 禁忌搜索解决任务分配问题(matlab)

function main()
clear
taskNum = 50;
machNum = 8;
densityV = [0.2]%,0.5,0.8];
ccrV = [0.5]%,1,2];
saSHH = [];
SAtimeHH = [];
for density = densityV
for ccr = ccrV
[ETC,adjMatrix,memReq,memCap] = instance(taskNum,machNum,ccr,density); %% taskH,machH,ccr,density,type
SAresultHH = [];
tSAHH = [];
for iter = 1:5
SAStart = cputime;
[SACost,IteratorSolution] = SA(ETC,adjMatrix,memReq,memCap);
SAresultHH = [SAresultHH,SACost];
SAtime = cputime - SAStart;
tSAHH = [tSAHH,SAtime];

end
saSHH = [saSHH;SAresultHH];
SAtimeHH = [SAtimeHH;tSAHH];
end
end
meanSAsHH = mean(saSHH')

stdSAsHH = std(saSHH')

meanSAtHH = mean(SAtimeHH')

col_sa = length(IteratorSolution);
plot(1:col_sa,IteratorSolution,'-x','linewidth',1.0);
xlabel('Evaluation number');
ylabel('Fitness value');
legend('SA');

function [bestCost,IteratorSolution] = SA(ETC,adjMatrix,memReq,memCap,speed,machRelia,linkRelia)
[taskNum,machNum] = size(ETC);
S = randint(1,taskNum,[1,machNum]); %initial the s randomly
T = IniTemp(S,ETC,adjMatrix,memReq,memCap); %initial the temprature
% Tlow = IniTemp(S,ETC,adjMatrix,memReq,memCap,0.50001);
[cost,memLoad] = calcCost(S,ETC,adjMatrix,memReq,memCap);
Alpha = 0.9; %the value of Alpha
Bita = 1.05; %the value of Bita
Nrep = taskNum * machNum; %the count of inner loop
IteratorSolution = []; %record the change among the loop
bestS = S;
bestCost = cost;
deadline1 = 0; %the count of the outer loop
while deadline1 <= 20
findBest = 0;
iter = 1;
deadline2 = 0;
while (iter <= Nrep)
triS = S;
triCost = cost;
t = fix(1 + rand * taskNum);
p = triS(t);
q = fix(1 + rand * machNum);
while p == q
q = fix(1 + rand * machNum);
end
triS(t) = q;
triCost = triCost - ETC(t,p) + ETC(t,q);
adjTask = find(adjMatrix(t,:));
for k = adjTask %alter communication cost
switch triS(k)
case q
triCost = triCost - adjMatrix(t,k);
case p
triCost = triCost + adjMatrix(t,k);
end
end
if (memLoad(p) > memCap(p)) %calculate violation
if (memLoad(p) - memReq(t)) <= memCap(p)
triCost = triCost - (memLoad(p) - memCap(p));
else
triCost = triCost - memReq(t);
end
end
% there exists no memory violation before migration
if (memLoad(q) + memReq(t)) > memCap(q)
if memLoad(q) <= memCap(q)
triCost = triCost + (memLoad(q) + memReq(t) - memCap(q));
else % there exists memory violation before migration
triCost = triCost + memReq(t);
end
end
Dita = triCost - cost;
if Dita < 0
S = triS;
cost = triCost;
memLoad(p) = memLoad(p) - memReq(t);
memLoad(q) = memLoad(q) + memReq(t);
if (triCost < bestCost)
bestS = triS;
bestCost = triCost;
deadline2 = 0;
findBest = 1;
end
else
if rand < exp(-Dita/T)
S = triS;
cost = triCost;
memLoad(p) = memLoad(p) - memReq(t);
memLoad(q) = memLoad(q) + memReq(t);
end
deadline2 = deadline2 + 1;
if deadline2 >= taskNum * machNum
break;
end
end
iter = iter + 1;
IteratorSolution = [IteratorSolution,cost];
end
T = Alpha * T;
Nrep = Bita * Nrep;
if findBest
deadline1 = 0;
else
deadline1 = deadline1 + 1;
end
end

function [totalCost,memLoad] = calcCost(S,ETC,adjMatrix,memReq,memCap)
[tN,mN] = size(ETC);
totalCost = 0;
memLoad = zeros(1,mN);
for t = 1:tN
totalCost = totalCost + ETC(t,S(t));
memLoad(S(t)) = memLoad(S(t)) + memReq(t);
for k = t+1:tN %t or t+1?
if (adjMatrix(t,k)>0) && (S(k) ~= S(t))
totalCost = totalCost + adjMatrix(t,k);
end
end
end
for m = 1:mN
if memLoad(m) > memCap(m)
totalCost = totalCost + (memLoad(m) - memCap(m));
end
end

function [ETC,adjMatrix,memReq,memCap] = instance(taskNum,machNum,ccr,density)

ETC = fix(1 + 200 * rand(taskNum,machNum));
for i = 1:taskNum-1
for j = i+1:taskNum
if (rand < density)
adjMatrix(i,j) = fix(2 * (1 + 200 * rand) * ccr / ((taskNum-1) * density));
else
adjMatrix(i,j) = 0;
end
adjMatrix(j,i) = adjMatrix(i,j);
end
end
% memory requirement of each task
memReq = fix(1 + 50 * rand(1,taskNum));
% memory capacity of each processor
memCap = fix((1 + rand(1,machNum)) * sum(memReq) / machNum);

function T = IniTemp(S,ETC,adjMatrix,memReq,memCap)
[taskNum,machNum] = size(ETC);
SumCi = 0;
AccValue = 0.9;
Ci = 0;
Cr = 0;
[cost,memLoad] = calcCost(S,ETC,adjMatrix,memReq,memCap); % calculate the total cost
for countNum = 1:200
triS = S;
triCost = cost;
t = fix(1 + taskNum * rand);
p = triS(t);
q = fix(1 + machNum * rand);
while p == q
q = fix(1 + machNum * rand);;
end
triS(t) = q;
triCost = triCost - ETC(t,p) + ETC(t,q);
adjTask = find(adjMatrix(t,:));
for k = adjTask %alter communication cost
switch triS(k)
case q
triCost = triCost - adjMatrix(t,k);
case p
triCost = triCost + adjMatrix(t,k);
end
end
if (memLoad(p) > memCap(p)) %calculate violation
if (memLoad(p) - memReq(t)) <= memCap(p)
triCost = triCost - (memLoad(p) - memCap(p));
else
triCost = triCost - memReq(t);
end
end
% there exists no memory violation before migration
if (memLoad(q) + memReq(t)) > memCap(q)
if memLoad(q) <= memCap(q)
triCost = triCost + (memLoad(q) + memReq(t) - memCap(q));
else % there exists memory violation before migration
triCost = triCost + memReq(t) ;
end
end
memLoad(p) = memLoad(p) - memReq(t);
memLoad(q) = memLoad(q) + memReq(t);

Dita = triCost - cost;
if Dita > 0
Ci = Ci + 1;
SumCi = SumCi + Dita;
else
Cr = Cr + 1;
end;
S = triS;
cost = triCost;
end;
Ca = SumCi / Ci;
T = -Ca / (log((AccValue - 1) * Cr / Ci + AccValue));

function T = calculateT(ETC,adjMatrix,tN,mN,solNum)
sol = fix(1+mN*rand(solNum,tN));
for i = 1:solNum
Fitness(i) = fitnessCal(ETC,adjMatrix,sol(i,:),tN);
end
T = max(Fitness) - min(Fitness);

% ***** the following function has no relation with the above ***** %
function machLoad = calcLoad(A,ETC,adjMatrix) % Objective 2
[tN,mN] = size(ETC);
machLoad = zeros(1,mN);
for k = 1:tN
machLoad(A(k)) = machLoad(A(k)) + ETC(k,A(k));
for h = k+1:tN
if (adjMatrix(k,h) > 0 && A(k) ~= A(h))
machLoad(A(k)) = machLoad(A(k)) + adjMatrix(k,h);
machLoad(A(h)) = machLoad(A(h)) + adjMatrix(k,h);
end
end
end

⑵ 禁忌搜索算法浅析

姓名:刘家沐

学号:19011210553

网络来源,有删减

【嵌牛导读】:针对TSP问题等类似的NP-hard 问题,如果能在尽量少的计算量的情况下找到一个最优或者是较优的解成为当前一个热门的讨论话题,禁忌搜索算法便是其中之一

【嵌牛鼻子】:禁忌搜索算法   最优化问题    TSP问题

【嵌牛正文】:

背景:禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。

使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。 

禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。 TS是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域 、禁忌表、禁忌长度、候选解、藐视准则等影响禁忌搜索算法性能的关键因素。迄今为止,TS算法在组合优化等计算机领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。

局域搜索:在一个小的搜索范围里,进行搜索,或者根据结果逐步扩大搜索范围,但是这样会容易陷入局部最优

为了获得好解,可以采用的策略有(1)扩大邻域结构,(2)变邻域结构    ,(3)多初始点。但这些策略依然无法保证算法具备跳出局优的能力。

禁忌搜索:

为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。 禁忌搜索 就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较, 珠穆朗玛峰 脱颖而出。

当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索中“禁忌表(tabu list)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best so far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。

主要思路:

1、在搜索中,构造一个短期循环记忆表-禁忌表,禁忌表中存放刚刚进行过的 |T|(T称为禁忌表)个邻居的移动,这种移动即解的简单变化。

2、禁忌表中的移动称为禁忌移动。对于进入禁忌表中的移动, 在以后的 |T| 次循环内是禁止的,以避免回到原来的解,从而避免陷入循环。|T| 次循环后禁忌解除。

3、禁忌表是一个循环表,在搜索过程中被循环的修改,使禁忌表始终保持 |T| 个移动。

4、即使引入了禁忌表,禁忌搜索仍可能出现循环。因此,必须给定停止准则以避免出现循环。当迭代内所发现的最好解无法改进或无法离开它时,算法停止。

总结:

与传统的优化算法相比,TS算法的主要特点是:

 1.从移动规则看,每次只与最优点比较,而不与经过点比较,故可以爬出局部最优。

 2.选优规则始终保持曾经达到的最优点,所以即使离开了全局最优点也不会失去全局最优性。

 3.终止规则不以达到局部最优为终止规则,而以最大迭代次数、出现频率限制或者目标值偏离成都为终止规则

禁忌搜索是对人类思维过程本身的一种模拟,它通过对一些局部最优解的禁忌(也可以说是记忆)达到接纳一部分较差解,从而跳出局部搜索的目的。因而在计算搜索领域有着广泛应用。

⑶ 禁忌搜索算法的主要思路

1、在搜索中,构造一个短期循环记忆表-禁忌表,禁忌表中存放刚刚进行过的 |T|(T称为禁忌表)个邻居的移动,这种移动即解的简单变化。
2、禁忌表中的移动称为禁忌移动。对于进入禁忌表中的移动, 在以后的 |T| 次循环内是禁止的,以避免回到原来的解,从而避免陷入循环。|T| 次循环后禁忌解除。
3、禁忌表是一个循环表,在搜索过程中被循环的修改,使禁忌表始终保持 |T| 个移动。
4、即使引入了禁忌表,禁忌搜索仍可能出现循环。因此,必须给定停止准则以避免出现循环。当迭代内所发现的最好解无法改进或无法离开它时,算法停止。

⑷ 禁忌搜索算法的伪码表达

procere tabu search;
begin
initialize a string vc at random,clear up the tabu list;
cur:=vc;
repeat
select a new string vn in the neighborhood of vc;
if va&gt;best_to_far then {va is a string in the tabu list}
begin
cur:=va;
let va take place of the oldest string in the tabu list;
best_to_far:=va;
end else
begin
cur:=vn;
let vn take place of the oldest string in the tabu list;
end;
until (termination-condition);
end;
以上程序中的关键在于: 禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。 为了降低计算量,禁忌长度和禁忌表的集合不宜太大,但是禁忌长度太小容易循环搜索,禁忌表太大容易陷入“局部极优解”。 上述程序段中对best_so_far的操作是直接赋值为最优的“解禁候选解”,但是有时候会出现没有大于best_so_far的,候选解也全部被禁的“死锁”状态,这个时候,就应该对候选解中最佳的进行解禁,以能够继续下去。 终止准则:和模拟退火,遗传算法差不多,常用的有:给定一个迭代步数;设定与估计的最优解的距离小于某个范围时,就终止搜索;当与最优解的距离连续若干步保持不变时,终止搜索; 邻域:由伪码 select a new string vn in the neighborhood of vc,可以看出,系统总是在初始点的邻域搜索可能解的,因而必须定义适合的邻域空间,如果解空间存在一个最优解X*,初始搜索点为S0,那么如果S0不存在到达X*的通路,就会使搜索陷入S0的邻域的局部最优解。可以证明如果邻域满足对称性条件,则在假设禁忌表足够长的情况下必然可搜索到全局最优解。

⑸ 学习Python需要掌握哪些技术

Python学习路线。

第一阶段Python基础与Linux数据库。这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模块、函数、异常处理、MySQL使用、协程等知识点。

学习目标:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。

第二阶段WEB全栈。这一部分主要学习Web前端相关技术,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、 数据库操作、Flask配置等知识。

学习目标:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django,可以完成数据监控后台的项目。

第三阶段数据分析+人工智能。这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。

学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。

第四阶段高级进阶。这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。

学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。

按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。

自学本身难度较高,一步一步学下来肯定全面且扎实,如果自己有针对性的想学哪一部分,可以直接跳过暂时不需要的针对性的学习自己需要的模块,可以多看一些不同的视频学习。

⑹ 禁忌搜索的禁忌搜索示例

组合优化是TS算法应用最多的领域。置换问题,如TSP、调度问题等,是一大批组合优化问题的典型代表,在此用它来解释简单的禁忌搜索算法的思想和操作。对于 n元素的置换问题,其所有排列状态数为n!,当n较大时搜索空间的大小将是天文数字,而禁忌搜索则希望仅通过探索少数解来得到满意的优化解。 可见,简单的禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中领域结构、候选解、禁忌长度、禁忌对象、藐视准则、终止准则等是影响禁忌搜索算法性能的关键。需要指出的是:
(1)首先,由于TS是局部领域搜索的一种扩充,因此领域结构的设计很关键,它决定了当前解的领域解的产生形式和数目,以及各个解之间的关系。
(2)其次,出于改善算法的优化时间性能的考虑,若领域结构决定了大量的领域解(尤其对大规模问题,如TSP的SWAP操作将产生Cn2个领域解),则可以仅尝试部分互换的结果,而候选解也仅取其中的少量最佳状态。
(3)禁忌长度是一个很重要的关键参数,它决定禁忌对象的任期,其大小直接进而影响整个算法的搜索进程和行为。同时,以上示例中,禁忌表中禁忌对象的替换是采用FIFO方式(不考虑藐视准则的作用),当然也可以采用其他方式,甚至是动态自适应的方式。
(4)藐视准则的设置是算法避免遗失优良状态,激励对优良状态的局部搜索,进而实现全局优化的关键步骤。
(5)对于非禁忌候选状态,算法无视它与当前状态的适配值的优劣关系,仅考虑它们中间的最佳状态为下一步决策,如此可实现对局部极小的突跳(是一种确定性策略)。
(6)为了使算法具有优良的优化性能或时间性能,必须设置一个合理的终止准则来结束整个搜索过程。 此外,在许多场合禁忌对象的被禁次数(frequency)也被用于指导搜索,以取得更大的搜索空间。禁忌次数越高,通常可认为出现循环搜索的概率越大。

⑺ 禁忌搜索算法的主要思想和特征

禁忌算法是一种亚启发式随机搜索算法1,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。 禁忌搜索是对人类思维过程本身的一种模拟,它通过对一些局部最优解的禁忌(也可以说是记忆)达到接纳一部分较差解,从而跳出局部搜索的目的.

热点内容
尘歌壶怎么修改配置 发布:2024-11-30 03:31:42 浏览:619
我的世界联机为什么无法连接至服务器 发布:2024-11-30 03:05:49 浏览:48
安卓手机锁屏的图片在哪里找到 发布:2024-11-30 03:00:49 浏览:189
安卓手机红点怎么去除 发布:2024-11-30 02:52:04 浏览:597
安卓手机屏幕标识怎么变大 发布:2024-11-30 02:47:07 浏览:975
墙加密区域 发布:2024-11-30 02:33:32 浏览:631
idrac中怎么控制服务器 发布:2024-11-30 02:18:27 浏览:911
蜘蛛矿池服务器地址 发布:2024-11-30 02:13:57 浏览:170
网易云访问记录 发布:2024-11-30 02:13:17 浏览:377
java的数据类型有哪些 发布:2024-11-30 02:12:42 浏览:547