前向传播算法
Ⅰ 深度学习中的神经网络编写需要设计到哪些算法
涉及到的算法有很多,比如反向传播算法、前向传播、卷积算法、矩阵远点的算法、梯度优化的算法、评估算法等等。单纯用算法来描述过于笼统,一般都是直接用对应的数学原理和公式去描述神经网络的编写过程的。首先,定义网络结构,诸如神经元个数、隐层数目、权重、偏置等,其次根据梯度下降进行前向传播,再次反向传播更新梯度,最后是循环往复直到网络最优。
Ⅱ 一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)
反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。
全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不使用任何第三方的深度学习框架)来解决一个具体的问题。
图 1 所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大。
为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:
输入的样本为:
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
第一层隐藏层有三个神经元: 、 和 。该层的输入为:
以 神经元为例,则其输入为:
同理有:
假设我们选择函数 作为该层的激活函数(图1中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为: 、 和 。
第二层隐藏层有两个神经元: 和 。该层的输入为:
即第二层的输入是第一层的输出乘以第二层的权重,再加上第二层的偏置。因此得到和的输入分别为:
该层的输出分别为: 和 。
输出层只有一个神经元 :。该层的输入为:
即:
因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为: 。
在1.1节里,我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为 ,其中 是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重 和偏置 )的偏导数。
假设我们要对第 层隐藏层的参数 和 求偏导数,即求 和 。假设 代表第 层神经元的输入,即 ,其中 为前一层神经元的输出,则根据链式法则有:
因此,我们只需要计算偏导数 、 和 。
前面说过,第k层神经元的输入为: ,因此可以得到:
上式中, 代表第 层神经元的权重矩阵 的第 行, 代表第 层神经元的权重矩阵 的第 行中的第 列。
我们以1.1节中的简单神经网络为例,假设我们要计算第一层隐藏层的神经元关于权重矩阵的导数,则有:
因为偏置b是一个常数项,因此偏导数的计算也很简单:
依然以第一层隐藏层的神经元为例,则有:
偏导数 又称为 误差项(error term,也称为“灵敏度”) ,一般用 表示,例如 是第一层神经元的误差项,其值的大小代表了第一层神经元对于最终总误差的影响大小。
根据第一节的前向计算,我们知道第 层的输入与第 层的输出之间的关系为:
又因为 ,根据链式法则,我们可以得到 为:
由上式我们可以看到,第 层神经元的误差项 是由第 层的误差项乘以第 层的权重,再乘以第 层激活函数的导数(梯度)得到的。这就是误差的反向传播。
现在我们已经计算出了偏导数 、 和 ,则 和 可分别表示为:
下面是基于随机梯度下降更新参数的反向传播算法:
单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。
我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:
输入的样本为(假设其真实类标为"1"):
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
假设所有的激活函数均为Logistic函数: 。使用均方误差函数作为损失函数:
为了方便求导,我们将损失函数简化为:
我们首先初始化神经网络的参数,计算第一层神经元:
上图中我们计算出了第一层隐藏层的第一个神经元的输入 和输出 ,同理可以计算第二个和第三个神经元的输入和输出:
接下来是第二层隐藏层的计算,首先我们计算第二层的第一个神经元的输入z₄和输出f₄(z₄):
同样方法可以计算该层的第二个神经元的输入 和输出 :
最后计算输出层的输入 和输出 :
首先计算输出层的误差项 ,我们的误差函数为 ,由于该样本的类标为“1”,而预测值为 ,因此误差为 ,输出层的误差项为:
接着计算第二层隐藏层的误差项,根据误差项的计算公式有:
最后是计算第一层隐藏层的误差项:
Ⅲ 神经网络中的前向和后向算法
神经网络中的前向和后向算法
看了一段时间的深度网络模型,也在tf和theano上都跑了一些模型,但是感觉没有潜下去,对很多东西的理解都只停留在“这个是干什么的”层次上面。昨天在和小老师一起看一篇文章的时候,就被问到RNN里面的后向传播算法具体是怎么推。当时心里觉得BP算法其实很熟悉啊,然后在推导的过程中就一脸懵逼了。于是又去网上翻了翻相关内容,自己走了一遍,准备做个笔记,算是个交代。
准备一个神经网络模型,比如:
其中,[i1,i2]
代表输入层的两个结点,[h1,h2]代表隐藏层的两个结点,[o1,o2]为输出。[b1,b2]
为偏置项。连接每个结点之间的边已经在图中标出。
来了解一下前向算法:
前向算法的作用是计算输入层结点对隐藏层结点的影响,也就是说,把网络正向的走一遍:输入层—->隐藏层—->输出层
计算每个结点对其下一层结点的影响。
?? 例如,我们要算结点h1
的值,那么就是:
是一个简单的加权求和。这里稍微说一下,偏置项和权重项的作用是类似的,不同之处在于权重项一般以乘法的形式体现,而偏置项以加法的形式体现。
??而在计算结点o1时,结点h1的输出不能简单的使用neth1的结果,必须要计算激活函数,激活函数,不是说要去激活什么,而是要指“激活的神经元的特征”通过函数保留并映射出来。以sigmoid函数为例,h1的输出:
于是
最后o1的输出结果,也就是整个网络的一个输出值是:
按照上面的步骤计算出out02,则[outo1,outo2]就是整个网络第一次前向运算之后得到的结果。
后向算法:
??在实际情况中,因为是随机给定的权值,很大的可能(几乎是100%)得到的输出与实际结果之间的偏差非常的大,这个时候我们就需要比较我们的输出和实际结果之间的差异,将这个残差返回给整个网络,调整网络中的权重关系。这也是为什么我们在神经网络中需要后向传播的原因。其主要计算步骤如下:
1. 计算总误差
2. 隐藏层的权值更新
在要更新每个边的权重之前,必须要知道这条边对最后输出结果的影响,可以用整体误差对w5求偏导求出:
具体计算的时候,可以采用链式法则展开:
在计算的时候一定要注意每个式子里面哪些自变量是什么,求导千万不要求错了。
??需要讲出来的一个地方是,在计算w1的权重时,Etotal中的两部分都需要对它进行求导,因为这条边在前向传播中对两个残差都有影响
3. 更新权重 这一步里面就没什么东西了,直接根据学习率来更新权重:
至此,一次正向+反向传播过程就到此为止,接下来只需要进行迭代,不断调整边的权重,修正网络的输出和实际结果之间的偏差(也就是training整个网络)。
Ⅳ bp算法是什么
误差反向传播算法:
BP算法的基本思想是,学习过程包括两个过程:信号前向传播和误差后向传播。
(1)前向传播:输入样本->输入层->各隐层(处理)->输出层。
(2)错误反向传播:输出错误(某种形式)->隐藏层(逐层)->输入层。
BP算法基本介绍:
多层隐含层前馈网络可以极大地提高神经网络的分类能力,但长期以来一直没有提出解决权值调整问题的博弈算法。
1986年,Rumelhart和McCelland领导的科学家团队出版了《并行分布式处理》一书,详细分析了具有非线性连续传递函数的多层前馈网络的误差反向比例(BP)算法,实现了Minsky关于多层网络的思想。由于误差的反向传播算法常用于多层前馈网络的训练,人们常直接称多层前馈网络为BP网络。