一个算法的时间复杂度是
㈠ 算法时间复杂度有几种
算法时间复杂度有3种:
1、常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),
2、线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
3、k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
(1)一个算法的时间复杂度是扩展阅读:
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),存在一个正常数c使得fn*c>=T(n)恒成立。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。
㈡ 算法的时间复杂度是指什么
算法的时间复杂度是指:执行程序所需的时间。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近无穷大时。
T(n)/f(n)的极限值为不等于零的常数,则称为f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。比如:
在 T(n)=4nn-2n+2 中,就有f(n)=nn,使得T(n)/f(n)的极限值为4,那么O(f(n)),也就是时间复杂度为O(n*n)。
时间复杂度中大O阶推导是:
推导大O阶就是将算法的所有步骤转换为代数项,然后排除不会对问题的整体复杂度产生较大影响的较低阶常数和系数。
有条理的说,推导大O阶,按照下面的三个规则来推导,得到的结果就是大O表示法:运行时间中所有的加减法常数用常数1代替。只保留最高阶项去除最高项常数。
其他常见复杂度是:
f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。
f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。
f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。
f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。
f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。
㈢ 算法的时间复杂度是什么
算法的时间复杂度,是一个用于度量一个算法的运算时间的一个描述,本质是一个函数。
根据这个函数能在不用具体的测试数据来测试的情况下,粗略地估计算法的执行效率,换句话讲时间复杂度表示的只是代码执行时间随数据规模增长的变化趋势。
常用大O来表述,这个函数描述了算法执行所要时间的增长速度,记作f(n)。算法需要执行的运算次数(用函数表示)记作T(n)。存在常数 c 和函数 f(n),使得当 n >= c 时 T(n) <= f(n),记作 T(n) = O(f(n)),其中,n代表数据规模也就是输入的数据。
时间复杂度如何计算
1、常量阶:只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2、线性阶、n方阶:一般情况下,如果循环体内循环控制变量为线性增长,那么包含该循环的算法的时间复杂度为O(n),线性阶嵌套线性阶的算法时间复杂度为O(nⁿ),涉及下文乘法法则。
3、线性对数阶:当一个线性阶代码段法嵌套一个对数阶代码段,该算法的时间复杂度为O(nlogn)。
4、指数阶和阶乘阶:根据函数,随着n的增加,运行时间会无限急剧增加,因此效率非常低下。
㈣ (11) 算法的时间复杂度是指______。 A. 执行算法程序所需要的时间 B. 算法程序的长度 C. 算法执行过程中所
(11)[答案]C
[考点]数据结构与算法
[评析]
算法的复杂度分时间复杂度和空间复杂度。
时间复杂度:在运行算法时所耗费的时间为f(n)(即 n的函数)。
空间复杂度:实现算法所占用的空间为g(n)(也为n的函数)。
称O(f(n))和O(g(n))为该算法的复杂度。
简单的例子比如常见的顺序结构时间复杂度为O(1),1层循环里面次数为n,时间复杂度就是O(n),2层循环for i=1 to n,for j=1 to n算法时间复杂度为O(n2)(里面为n的平方),复杂度主要用于算法的效率比较与优化,比如排序,查找…
㈤ 什么是时间复杂度、空间复杂度
1、时间复杂度:是指一个算法中的语句执行次数。
算法分析的目的在于选择合适算法和改进算法。
2、空间复杂度:是对一个算法在运行过程中临时占用存储空间的度量。
一个算法在计算机存储器上所占用的存储空间包括存储算法本身所占用的空间,算数和输入输出所占用的存储空间以及临时占用存储空间三个部分。
(5)一个算法的时间复杂度是扩展阅读:
在一个算法中,时间复杂度和空间复杂度往往是相互影响的。当追求一个较好的时间复杂度时,可能会使空间复杂度的性能变差,即可能导致占用较多的存储空间;
反之,当追求一个较好的空间复杂度时,可能会使时间复杂度的性能变差,即可能导致占用较长的运行时间。
另外,算法的所有性能之间都存在着或多或少的相互影响。因此,当设计一个算法(特别是大型算法)时,要综合考虑算法的各项性能,算法的使用频率,算法处理的数据量的大小,算法描述语言的特性,算法运行的机器系统环境等各方面因素,才能够设计出比较好的算法。
算法的时间复杂度和空间复杂度合称为算法的复杂度
㈥ 算法复杂度主要包括时间复杂度和空间复杂度
算法复杂度主要包括时间复杂度和空间复杂度解释如下:
算法的时间复杂度是指对算法执行时所花时间的度量。一般为问题规模的函数。
计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。
算法复杂度分为时间复杂度和空间复杂度。
时间复杂度和空间复杂度资料:
算法复杂度分为时间复杂度和空间复杂度。其作用:时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。(算法的复杂性体运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度。
㈦ 算法的时间复杂度是指什么
算法的时间复杂度是指算法在编写成可执行程序后,运行时所需要的资源,资源包括时间资源和内存资源。
一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
时间复杂度:
(1)时间频度:一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。
并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。算法的时间复杂度是指执行算法所需要的计算工作量。
(2)时间复杂度:在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
㈧ 算法的时间复杂度定义
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度。记作:T(n)=O(f(n))。它表示随问题n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中,f(n)是问题规模n的某个函数。
这样用大写O()来体现算法时间复杂度的记法,我们称之为大0记法。
㈨ 算法的时间复杂度什么意思
算法的时间复杂度通俗的讲就是执行算法所需要的时间(执行多少次赋值、比较、判断等操作)
为了方便比较,算法的时间复杂度计算的通常的做法是,从算法选取一种对于所研究的问题(或算法模型)来说是基本运算的操作,以其重复执行的次数作为评价算法时间。该基本操作多数情况下是由算法最深层环内的语句表示的,基本操作的执行次数实际上就是相应语句的执行次数。
再给你举个简单的例子吧:
for(int i = 0; i < n;++i)
;
这个循环执行n次 所以时间复杂度是O(n)
for(int i = 0; i< n;++i)
{
for(int j = 0; j< n;++j)
;
}
这嵌套的两个循环 而且都执行n次
那么它的时间复杂度就是 O(n^2)
时间复杂度只能大概的表示所用的时间
而一些基本步骤所运行的时间不同,但是由于很难精确无法计算,所以省略
如:
for(int i = 0;i < n;++i)
a = b;
和
for(int i = 0;i < n;++i)
;
这个运行的时间当然是第二个快,但是他们的时间复杂度都是 O(n) ,
由于a=b运算时间可以忽略不计,所以判断时间复杂度主要看循环的复杂度