算法具有普
❶ 什么是算法算法有哪些特征
一、算法应该具有的五个特征:
1.有穷性
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
2.确切性
算法的每一步骤必须有确切的定义;
3.输入项
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4.输出项
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5.可行性
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
二、算法可以宏泛的分为三类:
1.有限的,确定性算法
这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
2.有限的,非确定算法
这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
3.无限的算法
是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
拓展资料:
算法的要素:
一,数据对象的运算和操作:
计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:
1,算术运算:加减乘除等运算
2,逻辑运算:或、且、非等运算
3,关系运算:大于、小于、等于、不等于等运算
4,数据传输:输入、输出、赋值等运算[1]
二,算法的控制结构:
一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。
❷ 算法具有哪几个特征
算法是一种解决特定问题的方法和步骤的描述。通常来说,算法具有以下几个特征:
有穷性:算法必须在有限的时间内终止,否则将无限循环下去。
确定性:算法的每一步都必须是确定的,没有任何决策点。
可行性:算法必须是可行的,即它的每一步都必须是可以实现的。
有效性:算法必须是有效的,即它必须能够解决所规定的问题。
健壮性:算法必须是健壮的,即它必须能够适应输入数据的各种变化。
可读性:算法必须是可读的,即它必须能够被人类理解。
可维护性:算法必须是可维护的,即它必须能够被修改和改进。
可扩展性:算法必须是可扩展的,即它必须能够应对输入数据规模的增长。
可重复使用性:算法必须是可重复使用的,即它必须能够被用于解决多个不同的问题。
可复制性:算法必须是可复制的,即它必须能够被拷贝和重新使用。
希望这些信息对您有所帮助。
❸ 什么叫普适算法
普适计算又称普存计算、普及计算(英文中叫做pervasive computing或者Ubiquitous computing)这一概念强调和环境融为一体的计算,而计算机本身则从人们的视线里消失。在普适计算的模式下,人们能够在任何时间、任何地点、以任何方式进行信息的获取与处理。
❹ 一个完整的算法应该具有哪几个基本性质
算法的一般性质包括:
(1) 通用性 对于那些符合输入类型的任意输入数据,都能根据算法进行问题求解,包保证计算结构的正确性.
(2) 有效性 组成算法的每一条指令都必须是能够被人或机器确切执行的.
(3) 确定性 算法每执行一步之后,对于它的下一步,应该有明确的指示.即,保证每一步之后都有关于下一步动作的指令,不能缺乏下一步指令或仅仅含有模糊不清的指令.
(4) 有穷性 算法的执行必须在有限步内结束.
❺ 算法的特征有哪些
计算机的算法具有可行性,有穷性、输入输出、确定性。
计算机算法特点
1.有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。
2. 确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。
3. 有零个或多个输入、所谓输入是指在执行算法是需要从外界取得必要的信息。
4. 有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。
5.有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。
拓展资料:
重要算法
A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界(branch and bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
最大期望(EM)算法
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states)。
参考资料:计算机算法
❻ 算法有五个方面的重要特征,包括输入,确定性,输出,能行性还有
算法有五个方面的重要特征包括有穷性、确切性、输入项、输出项、可行性。
1、有穷性(Finiteness)
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
2、确切性(Definiteness)
算法的每一步骤必须有确切的定义;
3、输入项(Input)
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4、输出项(Output)
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性(Effectiveness)
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步骤,即每个计算步骤都可以在有限时间内完成(也称之为有效性)。
(6)算法具有普扩展阅读
1、迪杰斯特拉算法(又译戴克斯特拉算法)
这种图搜索算法具有多种应用方式,能够将需要解决的问题建模为图,并在其中找到两个节点间的最短路径。
2、RSA 算法
该算法由 RSA 公司的创始人们开发而成,使得密码学成果得以供世界上的每个人随意使用,甚至最终塑造了当今密码学技术的实现方式。
3、安全哈希算法
这实际上并不是真正的算法,而是由 NIST(美国国家标准技术研究所)所开发的一系列加密散列函数。然而,该算法家族对于世界秩序的维持起到了至关重要的作用。
4、比例微积分算法
该算法旨在利用控制回路反馈机制以最大程度控制期望输出信号与实际输出信号间的误差。其适用于一切存在信号处理需求的场景,包括以自动化方式通过电子技术控制的机械、液压或者热力系统。
5、数据压缩算法
很难确定哪种压缩算法的重要性最高,因为根据实际应用需求,大家使用的算法可能包括 zip、mp3 乃至 JPEG 以及 MPEG-2 等等。
❼ 算法的重要特性有哪些呢
算法的五个重要的特征:确定性、可行性、输入、输出、有穷性/有限性。
算法是解决“做什么”和“怎么做”的问题。解决一个问题可能有多种不同的算法,从效率上考虑,其中最为核心的还是算法的速度。因此,解决问题的步骤需要在有限的时间内完成,并且操作步骤中不可以有歧义性语句,以免后继步骤无法继续进行下去。通过对算法概念的分析,可以总结出一个算法必须满足如下 5个特性。
(1)有穷性。一个算法在执行有限步骤后,在有限时间内能够实现的,就称该算法具有有穷性。
有的算法在理论上满足有穷性,在有限的步骤后能够完成,但是计算机可能实际上会执行一天、一年、十年等等。算法的核心就是速度,那么这个算法也就没有意义了。总而言之,有穷性没有特定的限度,取决于人们的需要。
(2)确定性。算法中每一个步骤的表述都应该是确定的、没有歧义的语句。在人们的日常生活中,遇到歧义性语句,可以根据常识、语境等理解,然而还有可能理解错误。计算机不比人脑,不会根据算法的意义来揣测每一个步骤的意思,所以算法的每一步都要有确定的含义。
(3)有零个或多个输入。程序中的算法和数据是相互联系的。算法中,需要输入的是数据的量值。输入可以是多个也可以是零个。其实,零个输入并不是这个算法没有输入,而是这个输入没有直观地显现出来,隐藏在算法本身当中。
(4)有一个输出或多个输出。输出就是算法实现所得到的结果,是算法经过数据加工处理后得到的结果。有的算法输出的是数值,有的是图形,有的输出并不是那么显而易见。没有输出的算法是没有意义的。
(5)可行性。算法的可行性就是指每一个步骤都能够有效地执行,并得到确定的结果,而且能够用来方便地解决一类问题。
❽ 什么是算法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
❾ 算法具有哪些特点
算法应该具有以下五个重要的特征:
1,有穷性:算法的有穷性是指算法必须能在执行有限个步骤之后终止;
2,确切性:算法的每一步骤必须有确切的定义;
3,输入项:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4,输出项:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5,可行性:算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
(9)算法具有普扩展阅读:
对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。
一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。