神经网络算法java
Ⅰ 机器视觉学什么语言
机器视觉用什么语言开发
目前可以开发机器视觉的相关计算机语言有C++,C#,java,python等,甚至简单的PHP和JAVASCRIPT也可以开发相关的功能。
机器视觉需要用到图像处理库,有很多免费且开源的第三方图像库可以用,如十分着名的OpenCV,有C++,JAVA,PYTHON的版本,它包含了很多现成的函数,可以处理图像的形状,颜色,大小,图像文件保存,找相似图像,物体边缘(Cannyedge)算法。
机器视觉的另一个方向是神经网络深度学习算法。这里面有代表性的是谷歌的TensorFlow,具有很强大的机器视觉能力。
文字识别方面的代表有谷歌的Tesseract,这也是开源项目。
机器视觉用什么硬件
一个典型的机器视觉系统包括以下五大块:
1.照明
照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉光源照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
2.工业镜头
FOV(FieldOfVision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意:①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变
3.相机
按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。
4.图像采集卡
图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。
比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。
目前,千兆网口工业相机逐步成为主流,图像采集卡一般采用视觉专用的千兆网卡。
5.视觉处理器
视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集卡可以快速传输图像到存储器,而且计算机也快多了,所以现在视觉处理器用的较少了。
更多精彩阅读:
机器视觉是什么意思_机器视觉应用案例
机器视觉的任务_机器视觉的基本工作过程是怎样的
机器视觉自学需要学什么_学机器视觉好找工作吗
Ⅱ 请问高手,神经网络模型与学习算法用什么语言编程比较好JAVA 、c语言还是C++等。谢谢!
神经网络模型?不会是你的课题吧,大型算法应用(有界面),当然用C++(效率高)来写,JAVA次之(略简单)。
学习算法的精髓就用C,C++和JAVA作为高级语言打包了很多基础型的算法。
Ⅲ python和Java有什么区别吗
主要有以下四点区别:
1.python虚拟机没有java强,java虚拟机是java的核心,python的核心是可以很方便地使用c语言函数或c++库。
2.python是全动态性的,可以在运行时自己修改自己的代码,java只能通过变通方法实现。python的变量是动态的,而java的变量是静态的,需要事先声明,所以java ide的代码提示功能优于python ide。
3.python的产生几十年了,几十年前面向过程是主流,所以用python有好多程序用的是面向过程设计方法,很多概念从c语言过来的,class在python中是后加入的,而java是为了实现没有指针的c++(当年com组件用的引用记数,java用的虚拟机),主要采用面向对象的设计方法,很多概念是oop的概念。面向过程,相对简洁直观,但容易设计出面条程序,面向对象,相对抽象优雅,但容易过度抽象。
4.在实际使用的python入门简单,pyhton的强大在于库,为什么python的库强大,原因是python的库可以用python,c语言,c++等设计,再提供给python使用,所以无论gpu运行,神经网络,智能算法,数据分析,图像处理,科学计算,各式各样的库在等着你用。 而java没有python那么多的开源库,很多库是商业公司内部使用,或发布出来只是一个jar包,看不到原始代码。python虚拟机因为编译性没有java的支持的好(或者说故意这么设计的),一般直接使用源码(linux),或源码简单打个包(如pyexe)。
Ⅳ 人工智能用的编程语言是哪些
在推动AI产业从兴起进入快速发展的历程中,AI顶级人才的领军作用尤为重要。上至国家,下至科技巨头,无不将AI视为提升自身的核心竞争力的根本性战略。那么你有没有想过这么一个问题:人工智能开发语言哪个更好?
其实,并不是每种编程语言,都能为开发人员节省时间及精力。在此整理了5种比较适用于人工智能开发的编程语言:
Python
Python由于简单易用,是人工智能领域中使用较广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。
Java
对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。
Lisp
Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,因其可用性和符号结构而主要用于机器学习/ ILP子领域。着名的AI专家彼得·诺维奇(Peter Norvig)在其《Artificial Intelligence: A modern approach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一。
Prolog
Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。Prolog广泛应用于AI的 expert系统,也可用于医疗项目的工作。
C ++
在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C ++被广泛地快速执行,游戏中的AI主要用C ++编码,以便更快地执行和响应时间。这也是一门非常不错的语言。
Ⅳ 大数据学python还是java
今天给大家介绍一下关于如何选择大数据的编程语言?
首先比如有一个大数据项目,你知道问题领域(problemdomain),也知道使用什么基础设施,甚至可能已决定使用哪种框架来处理所有这些数据,但是有一个决定迟迟未能做出:
我该选择哪种语言?(或者可能更有针对性的问题是,我该迫使我的所有开发人员和数据科学家非要用哪种语言?这个问题不会推迟太久,迟早要定夺。
如何选择大数据的编程语言
当然,没有什么阻止得了你使用其他机制(比如XSLT转换)来处理大数据工作。但通常来说,如今大数据方面有多种语言可以选择,比如Java、Python、R和Scala。那么,你该选择哪种语言?为何要选择它,或者说何时选择它? 下面我们照着介绍Python和Java这两种语言。
Python
如果你的数据科学家不使用R,他们可能就会彻底了解Python。十多年来,Python在学术界当中一直很流行,尤其是在自然语言处理(NLP)等领域。因而,如果你有一个需要NLP处理的项目,就会面临数量多得让人眼花缭乱的选择,包括经典的NTLK、使用GenSim的主题建模,或者超快、准确的spaCy。同样,说到神经网络,Python同样游刃有余,有Theano和Tensorflow;随后还有面向机器学习的scikit-learn,以及面向数据分析的NumPy和Pandas。
还有Juypter/iPython――这种基于Web的笔记本服务器框架让你可以使用一种可共享的日志格式,将代码、图形以及几乎任何对象混合起来。这一直是Python的杀手级功能之一,不过这年头,这个概念证明大有用途,以至于出现在了奉行读取-读取-输出-循环(REPL)概念的几乎所有语言上,包括Scala和R。
Python往往在大数据处理框架中得到支持,但与此同时,它往往又不是“一等公民”。比如说,Spark中的新功能几乎总是出现在Scala/Java绑定的首位,可能需要用PySpark编写面向那些更新版的几个次要版本(对SparkStreaming/MLLib方面的开发工具而言尤为如此)。
Java
最终,总是少不了Java――这种语言没人爱,被遗弃,归一家只有通过起诉谷歌才有钱可赚时才似乎关心它的公司(注:Oracle)所有,完全不时髦。只有企业界的无人机才使用Java!不过,Java可能很适合你的大数据项目。想一想HadoopMapRece,它用Java编写。HDFS呢?也用Java来编写。连Storm、Kafka和Spark都可以在JVM上运行(使用Clojure和Scala),这意味着Java是这些项目中的“一等公民”。另外还有像GoogleCloudDataflow(现在是ApacheBeam)这些新技术,直到最近它们还只支持Java。
Java也许不是摇滚明星般备受喜爱的首选语言。但是由于研发人员在竭力理清Node.js应用程序中的一套回调,使用Java让你可以访问一个庞大的生态系统(包括分析器、调试器、监控工具以及确保企业安全和互操作性的库),以及除此之外的更多内容,大多数内容在过去二十年已久经考验(很遗憾,Java今年迎来21岁,我们都老矣)。
炮轰Java的一个主要理由是,非常繁琐冗长,而且缺少交互式开发所需的REPL(R、Python和Scala都有)。我见过10行基于Scala的Spark代码迅速变成用Java编写的变态的200行代码,还有庞大的类型语句,它们占据了屏幕的大部分空间。然而,Java8中新的Lambda支持功能对于改善这种情况大有帮助。Java从来不会像Scala那么紧凑,但是Java8确确实实使得用Java进行开发不那么痛苦。
你该使用哪种语言用于大数据项目?恐怕这还得“视情况而定”。如果跨GPU进行NLP或密集的神经网络处理,Python是很好的选择。如果想要一种加固的、面向生产环境的数据流解决方案,又拥有所有重要的操作工具,Java绝对是出色的选择。
推荐课程:python基础语法全讲解视频(马哥教育2014版)
Ⅵ 人工智能是用什么语言编写的
人工智能用的比较多的语言有:Python、JAVA 和相关语言、C/C++、JavaScript、R语言。
从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。有的还会需要了解域名比如com、top等等。
Ⅶ java和python有什么关系
Java和Python同属于编程语言,两者都是各个领域的霸主,但它们之间并没有什么关系。
Java和Python的区别如下:
1.Python比Java简单,学习成本低,开发效率高;
2.Java运行效率高于Python,尤其是纯Python开发的程序,效率极低;
3.Java相关资料多,尤其是中文资料;
4.Java版本比较稳定,Python2和3不兼容导致大量类库失效;
5.Java开发偏向于软件工程,团队协同,Python更适合小型开发;
6.Java偏向于商业开发,Python适合于数据分析;
7.Java是一种静态类型语言,Python是一种动态类型语言;
8.Java语法定义较复杂,Python语法简洁优美;
9.实现同一功能时,JAVA 要敲的键盘次数一般要比 Python 多。
Ⅷ 2019年十大最佳深度学习框架
作者 | Python语音识别
来源 | 涛哥聊Python
虽然我们大多数人都惊叹为什么DL这么好?在使用大量数据进行训练时,它在准确性方面非常出色。近几年随着深度学习算法的发展,出现了很多深度学习的框架,这些框架各有所长,各具特色。下面将为大家介绍2019年最受欢迎的十大深度学习框架。
TensorFlow谷歌的Tensorflow可以说是当今最受欢迎的深度学习框架。Gmail,Uber,Airbnb,Nvidia以及其他许多知名品牌都在使用。TF是目前深度学习的主流框架,Tensorflow主要特性:
TensorFlow支持python、JavaScript、C ++、Java和Go,C#和Julia等多种编程语言。 TF不仅拥有强大的计算集群,还可以在iOS和Android等移动平台上运行模型。 TF编程入门难度较大。初学者需要仔细考虑神经网络的架构,正确评估输入和输出数据的维度和数量。 TF使用静态计算图进行操作 。也就是说我们需要先定义图形,然后运行计算,如果我们需要对架构进行更改,我们会重新训练模型。选择这样的方法是为了提高效率,但是许多现代神经网络工具能够在学习过程中考虑改进而不会显着降低学习速度。在这方面,TensorFlow的主要竞争对手是PyTorch 。TensorFlow优点:
它非常适合创建和试验深度学习架构,便于数据集成,如输入图形,SQL表和图像。 它得到谷歌的支持,这就说明该模型短期内不会被抛弃,因此值得投入时间来学习它。 PyTorchTensorflow之后用于深度学习的主要框架是PyTorch。PyTorch框架是Facebook开发的,已被Twitter和Salesforce等公司使用。
PyTorch基本特性:
与TensorFlow不同,PyTorch库使用动态更新的图形进行操作 。这意味着它可以在流程中更改体系结构。 在PyTorch中,您可以使用标准调试器 ,例如pdb或PyCharm。PyTorch优点:
训练神经网络的过程简单明了。同时,PyTorch支持数据并行和分布式学习模型,并且还包含许多预先训练的模型。 PyTorch更适合小型项目和原型设计。 SonnetSonnet深度学习框架是建立在TensorFlow的基础之上。它是DeepMind用于创建具有复杂架构的神经网络。
Sonnet基本特性:
面向对象的库,在开发神经网络(NN)或其他机器学习(ML)算法时更加抽象。 Sonnet的想法是构造对应于神经网络的特定部分的主要Python对象。此外,这些对象独立地连接到计算TensorFlow图。分离创建对象并将其与图形相关联的过程简化了高级体系结构的设计。Sonnet优点:
Sonnet的主要优点是可以使用它来重现DeepMind论文中展示的研究,比Keras更容易,因为DeepMind论文模型就是使用Sonnet搭建的。 KerasKeras是一个机器学习框架,如果您拥有大量数据和/或你想快速入门深度学习,那么Keras将非常适合学习。Keras是TensorFlow高级集成APi,可以非常方便的和TensorFlow进行融合。这是我强烈推荐学习的一个库。
Keras基本特性:
除了Tensorflow之外,Keras还是其他流行的库(如Theano和CNTK)的高级API。 在Keras中更容易创建大规模的深度学习模型,但Keras框架环境配置比其他底层框架要复杂一些。Keras优点:
对于刚刚入门的人来说,Keras是最好的深度学习框架。它是学习和原型化简单概念的理想选择,可以理解各种模型和学习过程的本质。 Keras是一个简洁的API。 可以快速帮助您创建应用程序。 Keras中代码更加可读和简洁。 Keras模型序列化/反序列化API,回调和使用Python生成器的数据流非常成熟。顺便说一下TensorFlow和Keras的对比:
PS:Tensorflow处于底层框架:这和MXNet,Theano和PyTorch等框架一样。包括实现诸如广义矩阵 - 矩阵乘法和诸如卷积运算的神经网络原语之类的数学运算。
Keras处于高度集成框架。虽然更容易创建模型,但是面对复杂的网络结构时可能不如TensorFlow。
MXNetMXNet是一种高度可扩展的深度学习工具,可用于各种设备。虽然与TensorFlow相比,它似乎没有被广泛使用,但MXNet的增长可能会因为成为一个Apache项目而得到提升。
MXNet基本特性:
该框架支持多种语言,如C ++,Python,R,Julia,JavaScript,Scala,Go,甚至Perl。 可以在多个GPU和许多机器上非常有效地并行计算。MXNet优点:
支持多个GPU(具有优化的计算和快速上下文切换) 清晰且易于维护的代码(Python,R,Scala和其他API) 快速解决问题的能力(对于像我这样的深度学习新手至关重要)虽然它不像TF那么受欢迎,但MXNet具有详细的文档并且易于使用,能够在命令式和符号式编程风格之间进行选择,使其成为初学者和经验丰富的工程师的理想选择。
GLUONGluon是一个更好的深度学习框架,可以用来创建复杂的模型。GLUON基本特性:
Gluon的特殊性是具有一个灵活的界面,简化了原型设计,构建和培训深度学习模型,而不会牺牲学习速度。 Gluon基于MXNet,提供简单的API,简化深度学习模型的创建。 与PyTorch类似,Gluon框架支持使用动态图表 ,将其与高性能MXNet相结合。从这个角度来看,Gluon看起来像是分布式计算的Keras非常有趣的替代品。GLUON优点:
在Gluon中,您可以使用简单,清晰和简洁的代码定义神经网络。 它将训练算法和神经网络模型结合在一起,从而在不牺牲性能的情况下提供开发过程的灵活性。 Gluon可以定义动态的神经网络模型,这意味着它们可以动态构建,使用任何结构,并使用Python的任何本机控制流。 SWIFT当你听到Swift时,您可能会考虑iOS或MacOS的应用程序开发。但是如果你正在学习深度学习,那么你一定听说过Swens for Tensorflow。通过直接与通用编程语言集成,Swift for TensorFlow可以以前所未有的方式表达更强大的算法。SWIFT基本特性:
可以轻松获得可微分的自定义数据结构。 下一代API 。通过实践和研究获得的新API更易于使用且更强大。 在TensorFlow的基础上 ,Swift API为您提供对所有底层TensorFlow运算符的直接调用。 基于Jupyter、LLDB或者Swift in Colab的编程工具提高了您的工作效率。SWIFT优点:
如果动态语言不适合您的任务,那么这将是一个很好的选择。当你训练运行了几个小时,然后你的程序遇到类型错误,那么使用Swift,一种静态类型语言。您将看到代码错误的地方。 Chainer直到CMU的DyNet和Facebook的PyTorch出现之前,Chainer是动态计算图或网络的领先神经网络框架,它允许输入数据长度不一致。chainer基本特性:
Chainer代码是在Numpy和CuPy库的基础之上用纯Python编写的, Chainer是第一个使用动态架构模型的框架。Chainer优点:
通过自己的基准测试,Chainer明显比其他面向Python的框架更快,TensorFlow是包含MxNet和CNTK的测试组中最慢的。 比TensorFlow更好的GPU和GPU数据中心性能。最近Chainer成为GPU数据中心性能的全球冠军。 DL4J那些使用Java或Scala的人应该注意DL4J(Deep Learning for Java的简称)。DL4J的基本特性:
DL4J中的神经网络训练通过簇的迭代并行计算。 该过程由Hadoop和Spark架构支持。 使用Java允许您在Android设备的程序开发周期中使用。DL4J优点:
如果您正在寻找一个良好的Java深度学习框架,这会是一个非常好的平台。 ONNXONNX项目诞生于微软和Facebook,旨在寻找深度学习模型呈现的开放格式。ONNX简化了在人工智能的不同工作方式之间传递模型的过程。因此ONNX具有各种深度学习框架的优点。
ONNX基本特性:
ONNX使模型能够在一个框架中进行训练并转移到另一个框架中进行推理。ONNX模型目前在Caffe2,Microsoft Cognitive Toolkit,MXNet和PyTorch中得到支持,并且还有许多其他常见框架和库的连接器。ONNX优点:
对于PyTorch开发人员来说,ONNX是一个好的选择。但是对于那些喜欢TensorFlow的人来说,Keras等可能好一点。 总结那么您应该使用哪种深度学习框架?下面是几点建议:
如果你刚刚开始学习,那么最好的选择是Keras 。 出于研究目的,请选择PyTorch 。 对于生产,您需要关注环境。因此对于Google Cloud,最好的选择是TensorFlow ,适用于AWS - MXNet和Gluon 。 Android开发人员应该关注D4LJ ,对于iOS来说, Core ML会破坏类似的任务范围。 最后, ONNX将帮助解决不同框架之间的交互问题。Ⅸ 急求BP神经网络算法,用java实现!!!
见附件,一个基本的用java编写的BP网络代码。
BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。