pagerank算法的实现
❶ PageRank算法实现好友推荐(算法原理)
对于社交系统与电商网站,推荐系统占有很重要的位置,当数据量越来越大的时候,用户无法确定该选择什么商品,因此在电商系统中需要按照兴趣或者相似度给用户推荐相应的商品。相应的,在一个大型社交网络平台中,睁唤手对于一些用户,我们希望推荐一些知名度较高,活跃度较高或者感兴趣的用户,比如一些明星,歌手,演员等等。在社交网络中,PageRank算法有着广泛的应用,因此,本篇文章主要介绍其原理。
对于大部分社交系统来说,如果只是简单的获取好友的信息远远不够,我们可以通过获取好友的好友的信息来扩展用户的朋友圈,使得信息量更加丰富,本项目中使用PageRank算法来完成二级邻居,然后按照Rank排序,选择Top5用户实现用户的好友的好友的推荐。
PageRank算法由Google的创始人拉里·佩奇和谢尔·布林于1998年发明.这项技术设计之初是为了体现网页的相关性和重要性,在搜索引擎优化操作中经常被用来评估网页优化的成效因素之一.
从技术上看,搜索引擎需要解决以下三个问题:
本质就是一个爬虫问题,通过爬虫获取整个互联网的数据
关键在于快速找到.
它的实现方式有: 倒排索引,签名文件,后缀树等。我们最熟悉的是 倒排索引 。(并不熟悉,以后有机会再看)
排序是Google的搜索引擎能够兴起的一个决定性因素。
对网页排序有很多种方式,我们来看三种:
就是原封不懂地把索引到的链接直接返回给用户,缺点就不说了,想找自己感兴趣的内容估计要费不少功夫。
这种方式是一种只从关键词出现的次数和位置进行排序的方法。该方法以一个关键词与网页的相关度大小作为排序标准,而关键词在网页的相关度大小作为排序标准,而关键词在网页中的相关度则由它在网页中出现的频次和位置两方面加权计算得出。
缺点也很明显,容易出现刷分的情况,整篇文章中大量地刷关键词就能提高排名。
真正找到计算网页自身质量的完美的数学模型是Google的创始人拉里佩奇和谢尔盖布林。 下一节讲一下原理。
我们模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事、漫无目的地在网页上跳来跳去,PageRank就是估计这个悠闲的上网者分布在各个网页上的概率,这个概率就代表这个网页的重链大要性.
PageRank主要基于两个重要的假设:
如果一篇文章被越来越多的人引用,那么这篇文章可能就是一篇经典之作,如果这篇文章引用了其他的论文,那么一定程度上这篇被引用的文章也是一篇很好的文章。应用到社交网络中,如果一个好友被更多的人关注,那么说明该好友有很高的知名度和活跃度,那么,我们可以将该好友推荐给用户。
基于这两个假设,我们可以总结出PageRank算法的核心:
如下图,可以更好的表达PageRank算法的思想:
由上图可知,每个页面将自己的一部分rank传递给某个页面,我们可悉嫌以通过计算传递给某个页面的所有rank值的和来计算出它的rank值,当然,不可能是通过一次计算完成,我们刚开始可以给每个页面赋予一个初始rank值,比如 1/N(N为页面总数) ,通过迭代计算得到该页面的rank值。
迭代计算停止的条件为:
使用有向图表示:
这个例子中只有四个网页,如果当前在A网页,那么悠闲的上网者将会各以1/3的概率跳转到B、C、D,这里的3表示A有3条出链,如果一个网页有k条出链,那么跳转任意一个出链上的概率是1/k,同理D到B、C的概率各为1/2,而B到C的概率为0。
我们在做计算的时候会将该图表示成一个二维的矩阵,我们做一个转换,就会变成下图的矩阵形式。 M(i,j) 表示j节点指向i节点的概率 ,一般来说每列和为1。
生成的 转移矩阵 非常简单, 矩阵的每一列代表该顶点所代表的页面除以对应页面的出链数得到的 。
有了转移矩阵,我们可以来定义行向量 V , V 的第i个分量记录 对应的Rank值,因此一次Rank的更新可以表示为:
在算法的第一轮计算中,我们假设上网者在每一个网页的概率都是相等的,即1/n,于是初试的概率分布就是一个所有值都为1/n的n维列向量 ,用 去右乘转移矩阵M,就得到了第一步之后上网者的概率分布向量 ,得到一个nX1的矩阵 , 这个 一轮迭代计算出来的PageRank值 。下面是 的计算过程:
得到了 后,再用 去右乘M得到 ,一直下去,即 , 最终V会收敛 .
不断的迭代,最终得到结果.
但是在迭代计算中,我们需要考虑如下两大阻力: Dead End 和 Spider Trap :
Dead End就是指一个页面只有入链但是没有出链,这时转移矩阵M的一列为零,导致最后结果为零。这时web不是强连通的,即存在某一类节点不指向别人,如下图的D。这个时候我们的算法就会出问题了,它不满足收敛性了。
为什么不满足收敛性了?
Spider Trap指页面的所有出链都指向自己,这样会使迭代结果中只有自己的页面的Rank值很高。其他页面的Rank值为零。
要克服上面两个问题,我们需要将迭代计算公式做如下转变。我们可以加入一个 随机跳转 机制.
即假设每个页面有很小概率拥有一个指向其他页面的链接。
表现出来就是:其他页面本来传递给一个页面的Rank值需要做一个折扣,作为补偿,可能需要一个页面指向该页面并且传递Rank值给该页面,该跳转的概率为β,因此表达式变为:
其中,N为页面总数; e 为一个N维且各个分量都是1的向量;β通过经验得知一般设为0.15.
此时的计算结果过程为:
有机会再写,先空着
❷ 对pagerank算法的整理
1、首先先大致介绍下pagerank,pagerank是Google排名算法法则的一部分,是用来标记网页的等级的一种方法,也是用来衡量一个网页好坏的唯一标准。pagerank他采用PR值来划分网页的受欢迎度,PR值越高,则表名受欢迎度越高,PR最高为10,最低为0,一般PR达到4,则表名网站已经不错了。PR为4的网站比PR为3的网站不是单纯的好一点来形容,他是一种里氏震级的形式来形容的,就好比地震的等级,是指数刻度增长的,因此可以想象PR为10的网站是一种什么程度。因为这个算法是Google提出的,因此Google将自己的网站PR值设置为10,所以想要自己的网站PR达到10,是非常难的,如果你的网站可以达到Google的水平。
2、介绍完了pagerank是一个什么东西后,我们就来介绍一下pagerank如何计算的。
2.1、用个例子来说明下PageRank算法
在网页A中有B、C、D三个链接,在网页B中有A、C两个个链接,在网页C中有D链接,网页D中有A、B两个链接。(可以看出这个图是强链接的,任何一个节点都可以到达另一个节点)。
我们假设每一个链接访问的概率是相同的,为了计算方便我们将每一个网页的PageRank设置为1。
先给出计算公式
PR(pj) 表示网页 pj 的 PageRank 得分,L(pj) 表示网页 pj 的出链接数量,1/L(pj) 就表示从网页 pj 跳转到 pi 的概率。
所以我们来计算第一次迭代后的PR值:
PR(A)=PR(B)/2+PR(D)/2
PR(B)=PR(A)/3+PR(D)/2
PR(C)=PR(A)/3+PR(B)/2
PR(D)=PR(A)/3+PR(C)/1
PR(A)+PR(B)+PR(C)+PR(D)=1
PR(A)=0.265, PR(B)=0.235, PR(C)=0.206, PR(D)=0.294
通过上面的公式在不断的进行迭代,可以得到一个收敛值,大概是在(0.265,0.235,2.206,0.294)附近。
2.2看完公式之后,我们来考虑俩种特殊的情况
2.2.1终止问题
上面过程要满足收敛性,需要具备一个条件:图是强连通的,即从任意网页可以到达其他任意网页。
互联网中存在网页不满足强连通的特性,因为有一些网页不指向任何网页,按照上面公式迭代计算下去,导致前面累计得到的转移概率被清零,最终得到的概率分布向量所有元素几乎都为0。
假设把上面图中C到D的链接丢掉,C变成了一个终止点,得到下面这个图:
转移矩阵M为:
不断迭代,最终得到所有元素都为0。
2.2.2 、陷阱问题
陷阱问题:是指有些网页不存在指向其他网页的链接,但存在指向自己的链接。比如下面这个图:
这种情况下,PageRank算法不断迭代会导致概率分布值全部转移到c网页上,这使得其他网页的概率分布值为0,从而整个网页排名就失去了意义。如果按照上面图则对应的转移矩阵M为:
不断迭代,最终得倒如下结果:
为了解决终止点问题和陷阱问题 ,下面需要对算法进行改进。假设选取下一个跳转页面时,既不选 当前页面 ,也不选 当前网页上的其他链接 ,而是以一定概率跳转到其他不相关网页,那么上面两个问题就能得到很好的解决,这就是 完整 PageRank 算法思想 。
N表示的时网页链接的个数,α表示不进行随机跳转的概率。
利用上面公式继续迭代下去,直到收敛,得到最终rank值。
PageRank 的计算是采样迭代法实现的:一开始所有网页结点的初始 PageRank 值都可以设置为某个相同的数,例如 1,然后我们通过上面这个公式,得到每个结点新的 PageRank 值。每当一张网页的 PageRank 发生了改变,它也会影响它的出链接所指向的网页,因此我们可以再次使用这个公式,循环地修正每个网页结点的值。由于这是一个马尔科夫过程,所以我们能从理论上证明,所有网页的 PageRank 最终会达到一个稳定的数值。整个证明过程很复杂,这里我们只需要知道这个迭代计算的过程就行了。
3、基于本文主题叫做数学建模之美,也是一篇读后感,所以我们还是写一下感受吧。
这个算法的优美之处,就在于巧妙地将网页内容的好坏,根据链接数的形式,用PR值进行了排名,它不仅激发网页越做越好,也促进了各个网页之间的联系。
同时在结构方面,他将一个复杂的问题,进行了简单的类比,用图结构的形式代替链接的形式,用户访问的顺序,也就是节点的走向。所以数学之美就在于他是非常的简单,用简单的原理,向我们展示了一个复杂的问题。
❸ 搜索引擎的排序算法都有哪些是怎么实现的
2.1基于词频统计——词位置加权的搜索引擎
利用关键词在文档中出现的频率和位置排序是搜索引擎最早期排序的主要思想,其技术发展也最为成熟,是第一阶段搜索引擎的主要排序技术,应用非常广泛,至今仍是许多搜索引擎的核心排序技术。其基本原理是:关键词在文档中词频越高,出现的位置越重要,则被认为和检索词的相关性越好。
1)词频统计
文档的词频是指查询关键词在文档中出现的频率。查询关键词词频在文档中出现的频率越高,其相关度越大。但当关键词为常用词时,使其对相关性判断的意义非常小。TF/IDF很好的解决了这个问题。TF/IDF算法被认为是信息检索中最重要的发明。TF(Term Frequency):单文本词汇频率,用关键词的次数除以网页的总字数,其商称为“关键词的频率”。IDF(Inverse Document Frequency):逆文本频率指数,其原理是,一个关键词在N个网页中出现过,那么N越大,此关键词的权重越小,反之亦然。当关键词为常用词时,其权重极小,从而解决词频统计的缺陷。
2)词位置加权
在搜索引擎中,主要针对网页进行词位置加权。所以,页面版式信息的分析至关重要。通过对检索关键词在Web页面中不同位置和版式,给予不同的权值,从而根据权值来确定所搜索结果与检索关键词相关程度。可以考虑的版式信息有:是否是标题,是否为关键词,是否是正文,字体大小,是否加粗等等。同时,锚文本的信息也是非常重要的,它一般能精确的描述所指向的页面的内容。
2.2基于链接分析排序的第二代搜索引擎
链接分析排序的思想起源于文献引文索引机制,即论文被引用的次数越多或被越权威的论文引用,其论文就越有价值。链接分析排序的思路与其相似,网页被别的网页引用的次数越多或被越权威的网页引用,其价值就越大。被别的网页引用的次数越多,说明该网页越受欢迎,被越权威的网页引用,说明该网页质量越高。链接分析排序算法大体可以分为以下几类:基于随机漫游模型的,比如PageRank和Repution算法;基于概率模型的,如SALSA、PHITS;基于Hub和Authority相互加强模型的,如HITS及其变种;基于贝叶斯模型的,如贝叶斯算法及其简化版本。所有的算法在实际应用中都结合传统的内容分析技术进行了优化。本文主要介绍以下几种经典排序算法:
1)PageRank算法
PageRank算法由斯坦福大学博士研究生Sergey Brin和Lwraence Page等提出的。PageRank算法是Google搜索引擎的核心排序算法,是Google成为全球最成功的搜索引擎的重要因素之一,同时开启了链接分析研究的热潮。
PageRank算法的基本思想是:页面的重要程度用PageRank值来衡量,PageRank值主要体现在两个方面:引用该页面的页面个数和引用该页面的页面重要程度。一个页面P(A)被另一个页面P(B)引用,可看成P(B)推荐P(A),P(B)将其重要程度(PageRank值)平均的分配P(B)所引用的所有页面,所以越多页面引用P(A),则越多的页面分配PageRank值给P(A),PageRank值也就越高,P(A)越重要。另外,P(B)越重要,它所引用的页面能分配到的PageRank值就越多,P(A)的PageRank值也就越高,也就越重要。
其计算公式为:
PR(A):页面A的PageRank值;
d:阻尼系数,由于某些页面没有入链接或者出链接,无法计算PageRank值,为避免这个问题(即LinkSink问题),而提出的。阻尼系数常指定为0.85。
R(Pi):页面Pi的PageRank值;
C(Pi):页面链出的链接数量;
PageRank值的计算初始值相同,为了不忽视被重要网页链接的网页也是重要的这一重要因素,需要反复迭代运算,据张映海撰文的计算结果,需要进行10次以上的迭代后链接评价值趋于稳定,如此经过多次迭代,系统的PR值达到收敛。
PageRank是一个与查询无关的静态算法,因此所有网页的PageRank值均可以通过离线计算获得。这样,减少了用户检索时需要的排序时间,极大地降低了查询响应时间。但是PageRank存在两个缺陷:首先PageRank算法严重歧视新加入的网页,因为新的网页的出链接和入链接通常都很少,PageRank值非常低。另外PageRank算法仅仅依靠外部链接数量和重要度来进行排名,而忽略了页面的主题相关性,以至于一些主题不相关的网页(如广告页面)获得较大的PageRank值,从而影响了搜索结果的准确性。为此,各种主题相关算法纷纷涌现,其中以以下几种算法最为典型。
2)Topic-Sensitive PageRank算法
由于最初PageRank算法中是没有考虑主题相关因素的,斯坦福大学计算机科学系Taher Haveli-wala提出了一种主题敏感(Topic-Sensitive)的PageRank算法解决了“主题漂流”问题。该算法考虑到有些页面在某些领域被认为是重要的,但并不表示它在其它领域也是重要的。
网页A链接网页B,可以看作网页A对网页B的评分,如果网页A与网页B属于相同主题,则可认为A对B的评分更可靠。因为A与B可形象的看作是同行,同行对同行的了解往往比不是同行的要多,所以同行的评分往往比不是同行的评分可靠。遗憾的是TSPR并没有利用主题的相关性来提高链接得分的准确性。
3)HillTop算法
HillTop是Google的一个工程师Bharat在2001年获得的专利。HillTop是一种查询相关性链接分析算法,克服了的PageRank的查询无关性的缺点。HillTop算法认为具有相同主题的相关文档链接对于搜索者会有更大的价值。在Hilltop中仅考虑那些用于引导人们浏览资源的专家页面(Export Sources)。Hilltop在收到一个查询请求时,首先根据查询的主题计算出一列相关性最强的专家页面,然后根据指向目标页面的非从属专家页面的数量和相关性来对目标页面进行排序。
HillTop算法确定网页与搜索关键词的匹配程度的基本排序过程取代了过分依靠PageRank的值去寻找那些权威页面的方法,避免了许多想通过增加许多无效链接来提高网页PageRank值的作弊方法。HillTop算法通过不同等级的评分确保了评价结果对关键词的相关性,通过不同位置的评分确保了主题(行业)的相关性,通过可区分短语数防止了关键词的堆砌。
但是,专家页面的搜索和确定对算法起关键作用,专家页面的质量对算法的准确性起着决定性作用,也就忽略了大多数非专家页面的影响。专家页面在互联网中占的比例非常低(1.79%),无法代表互联网全部网页,所以HillTop存在一定的局限性。同时,不同于PageRank算法,HillTop算法的运算是在线运行的,对系统的响应时间产生极大的压力。
4)HITS
HITS(Hyperlink Inced Topic Search)算法是Kleinberg在1998年提出的,是基于超链接分析排序算法中另一个最着名的算法之一。该算法按照超链接的方向,将网页分成两种类型的页面:Authority页面和Hub页面。Authority页面又称权威页面,是指与某个查询关键词和组合最相近的页面,Hub页面又称目录页,该页面的内容主要是大量指向Authority页面的链接,它的主要功能就是把这些Authority页面联合在一起。对于Authority页面P,当指向P的Hub页面越多,质量越高,P的Authority值就越大;而对于Hub页面H,当H指向的Authority的页面越多,Authority页面质量越高,H的Hub值就越大。对整个Web集合而言,Authority和Hub是相互依赖、相互促进,相互加强的关系。Authority和Hub之间相互优化的关系,即为HITS算法的基础。
HITS基本思想是:算法根据一个网页的入度(指向此网页的超链接)和出度(从此网页指向别的网页)来衡量网页的重要性。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量Authority和Hub值进行更新直至收敛。
实验数据表明,HITS的排名准确性要比PageRank高,HITS算法的设计符合网络用户评价网络资源质量的普遍标准,因此能够为用户更好的利用网络信息检索工具访问互联网资源带来便利。
但却存在以下缺陷:首先,HITS算法只计算主特征向量,处理不好主题漂移问题;其次,进行窄主题查询时,可能产生主题泛化问题;第三,HITS算法可以说一种实验性质的尝试。它必须在网络信息检索系统进行面向内容的检索操作之后,基于内容检索的结果页面及其直接相连的页面之间的链接关系进行计算。尽管有人尝试通过算法改进和专门设立链接结构计算服务器(Connectivity Server)等操作,可以实现一定程度的在线实时计算,但其计算代价仍然是不可接受的。
2.3基于智能化排序的第三代搜索引擎
排序算法在搜索引擎中具有特别重要的地位,目前许多搜索引擎都在进一步研究新的排序方法,来提升用户的满意度。但目前第二代搜索引擎有着两个不足之处,在此背景下,基于智能化排序的第三代搜索引擎也就应运而生。
1)相关性问题
相关性是指检索词和页面的相关程度。由于语言复杂,仅仅通过链接分析及网页的表面特征来判断检索词与页面的相关性是片面的。例如:检索“稻瘟病”,有网页是介绍水稻病虫害信息的,但文中没有“稻瘟病”这个词,搜索引擎根本无法检索到。正是以上原因,造成大量的搜索引擎作弊现象无法解决。解决相关性的的方法应该是增加语意理解,分析检索关键词与网页的相关程度,相关性分析越精准,用户的搜索效果就会越好。同时,相关性低的网页可以剔除,有效地防止搜索引擎作弊现象。检索关键词和网页的相关性是在线运行的,会给系统相应时间很大的压力,可以采用分布式体系结构可以提高系统规模和性能。
2)搜索结果的单一化问题
在搜索引擎上,任何人搜索同一个词的结果都是一样。这并不能满足用户的需求。不同的用户对检索的结果要求是不一样的。例如:普通的农民检索“稻瘟病”,只是想得到稻瘟病的相关信息以及防治方法,但农业专家或科技工作者可能会想得到稻瘟病相关的论文。
解决搜索结果单一的方法是提供个性化服务,实现智能搜索。通过Web数据挖掘,建立用户模型(如用户背景、兴趣、行为、风格),提供个性化服务。
❹ 搜索引擎的排序算法都有哪些是怎么实现的
搜索引擎的排序算法:
词频统计——词位置加权的搜索引擎
关键词在文档中词频越高,出现的位置越重要,则被认为和检索词的相关性越好。
1)词频统计
2)词位置加权
2.2基于链接分析排序的第二代搜索引擎
1)PageRank算法
PageRank算法的基本思想是:页面的重要程度用PageRank值来衡量,PageRank值主要体现在两个方面:引用该页面的页面个数和引用该页面的页面重要程度。
其计算公式为:
PR(A):页面A的PageRank值;
d:阻尼系数,由于某些页面没有入链接或者出链接,无法计算PageRank值,为避免这个问题(即LinkSink问题),而提出的。阻尼系数常指定为0.85。
R(Pi):页面Pi的PageRank值;
C(Pi):页面链出的链接数量;
2)Topic-Sensitive PageRank算法
3)HillTop算法
HillTop算法通过不同等级的评分确保了评价结果对关键词的相关性,通过不同位置的评分确保了主题(行业)的相关性,通过可区分短语数防止了关键词的堆砌。
4)HITS
HITS算法只计算主特征向量,处理不好主题漂移问题;其次,进行窄主题查询时,可能产生主题泛化问题;因此可据LIngmao了解看待,找寻适合的算法