遥感集成算法
发布时间: 2023-10-31 03:12:11
❶ 面向遥感图像分类基于注意力机制,你有哪些了解算法
传统的基于像素的遥感图像处理方法是基于遥感图像丰富的光谱信息和地面物体之间明显的光谱差异。对于只有几个波段的高分辨率遥感影像,传统的分类方法会导致分类精度降低和大量的空间数据冗余,分类结果往往是椒盐图像,不利于进行空间分析。为了解决这一传统问题,模糊分类技术应运而生。模糊分类是一种图像分类技术,它将任何范围的特征值转化为0到1之间的模糊值,表示属于某个指定类别的程度。
除此以外,所有这些背景信息在图像分析中都非常重要,例如,城市绿地与一些湿地在光谱信息上相当相似,只要在面向对象的图像分析中明确城市绿地的背景为城市地区,就可以很容易地区分绿地和湿地,在基于像素的分类中,几乎不使用这种背景信息。面向对象的图像分析技术是在空间信息技术的长期发展过程中产生的,在遥感图像分析中具有很大的潜力。
到目前为止,面向对象的方法是一种比较理想的方法,可以建立一个与现实世界相匹配的地面模型。面向对象的处理方法中最重要的部分是图像分割。随着地球观测任务的逐步细化,高分辨率的遥感卫星图像得到了越来越广泛的应用。这给遥感图像分类方法带来了挑战。现有的研究表明,基于像素的高分辨率遥感图像分类存在着明显的局限性。近年来,基于对象的图像分析(OBIA)被认为是遥感和地理信息科学的一个重要趋势,在高分辨率遥感图像处理中变得越来越突出。
热点内容