当前位置:首页 » 操作系统 » selectlinuxc

selectlinuxc

发布时间: 2023-10-26 20:26:07

c语言中select函数的作用

编程的过程中,经常会遇到许多阻塞的函数,好像read和网络编程时使用的recv, recvfrom函数都是阻塞的函数,当函数不能成功执行的时候,程序就会一直阻塞在这里,无法执行下面的代码。这是就需要用到非阻塞的编程方式,使用selcet函数就可以实现非阻塞编程。
selcet函数是一个轮循函数,即当循环询问文件节点,可设置超时时间,超时时间到了就跳过代码继续往下执行。

Select的函数格式:

int select(int maxfdp,fd_set *readfds,fd_set *writefds,fd_set *errorfds,struct timeval*timeout);

select函数有5个参数
第一个是所有文件节点的最大值加1,如果我有三个文件节点1、4、6,那第一个参数就为7(6+1)

第二个是可读文件节点集,类型为fd_set。通过FD_ZERO(&readfd);初始化节点集;然后通过FD_SET(fd, &readfd);把需要监听是否可读的节点加入节点集
第三个是可写文件节点集中,类型为fd_set。操作方法和第二个参数一样。
第四个参数是检查节点错误集。
第五个参数是超时参数,类型为struct timeval,然后可以设置超时时间,分别可设置秒timeout.tv_sec和微秒timeout.tv_usec。
然后调用select函数,用FD_ISSET()函数判断节点是否可读写。返回值不为0表示可读写,为0表示不可读写。select函数的返回值为是一个整数,表示有几个节点可读写。

先说明两个结构体:
第一,struct fd_set可以理解为一个集合,这个集合中存放的是文件描述符(filedescriptor),即文件句柄,这可以是我们所说的普通意义的文件,当然Unix下任何设备、管道、FIFO等都是文件形式,全部包括在内,所以毫无疑问一个socket就是一个文件,socket句柄就是一个文件描述符。fd_set集合可以通过一些宏由人为来操作,比如清空集合FD_ZERO(fd_set *),将一个给定的文件描述符加入集合之中FD_SET(int ,fd_set*),将一个给定的文件描述符从集合中删除FD_CLR(int,fd_set*),检查集合中指定的文件描述符是否可以读写FD_ISSET(int ,fd_set* )。

第二,struct timeval是一个大家常用的结构,用来代表时间值,有两个成员,一个是秒数,另一个是毫秒数。

具体解释select的参数:
int maxfdp是一个整数值,是指集合中所有文件描述符的范围,即所有文件描述符的最大值加1,不能错!在Windows中这个参数的值无所谓,可以设置不正确。

fd_set * readfds是指向fd_set结构的指针,这个集合中应该包括文件描述符,我们是要监视这些文件描述符的读变化的,即我们关心是否可以从这些文件中读取数据了,如果这个集合中有一个文件可读,select就会返回一个大于0的值,表示有文件可读,如果没有可读的文件,则根据timeout参数再判断是否超时,若超出timeout的时间,select返回0,若发生错误返回负值。可以传入NULL值,表示不关心任何文件的读变化。

fd_set * writefds是指向fd_set结构的指针,这个集合中应该包括文件描述符,我们是要监视这些文件描述符的写变化的,即我们关心是否可以向这些文件中写入数据了,如果这个集合中有一个文件可写,select就会返回一个大于0的值,表示有文件可写,如果没有可写的文件,则根据timeout参数再判断是否超时,若超出timeout的时间,select返回0,若发生错误返回负值。可以传入NULL值,表示不关心任何文件的写变化。

fd_set * errorfds同上面两个参数的意图,用来监视文件错误异常。
struct timeval * timeout是select的超时时间,这个参数至关重要,它可以使select处于三种状态,第一,若将NULL以形参传入,即不传入时间结构,就是将select置于阻塞状态,一定等到监视文件描述符集合中某个文件描述符发生变化为止;第二,若将时间值设为0秒0毫秒,就变成一个纯粹的非阻塞函数,不管文件描述符是否有变化,都立刻返回继续执行,文件无变化返回0,有变化返回一个正值;第三,timeout的值大于0,这就是等待的超时时间,即select在timeout时间内阻塞,超时时间之内有事件到来就返回了,否则在超时后不管怎样一定返回,返回值同上述。

返回值:返回状态发生变化的描述符总数。
负值:select错误
正值:某些文件可读写或出错
0:等待超时,没有可读写或错误的文件

linux C语言select函数怎么不能实现sleep呀

我修改了一下,运行一下试试,祝你好运:

#include <stdio.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>

int main()
{
struct timeval tv;
int i =0;
while( i++ < 10)
{
tv.tv_sec = 1;
tv.tv_usec = 0;
printf("%d\n", i);
fflush(stdout);
int ret = select (0, NULL, NULL, NULL, &tv);
if (ret == -1)
{
fprintf (stdout, "select error . errno=%d [%s]\n", errno, strerror(errno));
break;
}
//sleep(1);
//usleep(1000000);
}
return 0;
}

Ⅲ linux下用C语言对mysql中select语句的封装

1.需要用到mysql c api
2.步骤通常是:连接数据库,执行查询,异常处理这些。
3.你需要对api 进行一些了解,然后合理调用。
参考代码:
//连接代码:

/*
* connect1.c - connect to and disconnect from MySQL server
*/
#include <my_global.h>
#include <my_sys.h>
#include <mysql.h>

static char *opt_host_name = NULL; /* server host (default=localhost) */
static char *opt_user_name = NULL; /* username (default=login name) */
static char *opt_password = NULL; /* password (default=none) */
static unsigned int opt_port_num = 0; /* port number (use built-in value) */
static char *opt_socket_name = NULL; /* socket name (use built-in value) */
static char *opt_db_name = NULL; /* database name (default=none) */
static unsigned int opt_flags = 0; /* connection flags (none) */
static MYSQL *conn; /* pointer to connection handler */
int
main (int argc, char *argv[])
{
/* initialize connection handler */
conn = mysql_init (NULL);
if (conn == NULL)
{
fprintf (stderr, "mysql_init() failed (probably out of memory)\n");
exit (1);
}
/* connect to server */
if (mysql_real_connect (conn, opt_host_name, opt_user_name, opt_password,
opt_db_name, opt_port_num, opt_socket_name, opt_flags) == NULL)
{
fprintf (stderr, "mysql_real_connect() failed\n");
mysql_close (conn);
exit (1);
}
/* disconnect from server */
mysql_close (conn);
exit (0);
}

//处理sql 语句的函数:

void
process_statement (MYSQL *conn, char *stmt_str)
{
MYSQL_RES *res_set;
if (mysql_query (conn, stmt_str) != 0) /* the statement failed */
{
print_error (conn, "Could not execute statement");
return;
}
/* the statement succeeded; determine whether it returned data */
res_set = mysql_store_result (conn);
if (res_set) /* a result set was returned */
{
/* process rows and then free the result set */
process_result_set (conn, res_set);
mysql_free_result (res_set);
}
else /* no result set was returned */
{
/*
* does the lack of a result set mean that the statement didn't
* return one, or that it should have but an error occurred?
*/
if (mysql_field_count (conn) == 0)
{
/*
* statement generated no result set (it was not a SELECT,
* SHOW, DESCRIBE, etc.); just report rows-affected value.
*/
391
Processing SQL Statements
printf ("%lu rows affected\n",
(unsigned long) mysql_affected_rows (conn));
}
else /* an error occurred */
{
print_error (conn, "Could not retrieve result set");
}
}
}

//以上提供的是常规的处理,你需要根据实际情况完善。
//同时调用了一些mysql 的api函数。

ref:
MySQL
(Fourth Edition)
Paul DuBois

Ⅳ 关于Linux下的select/epoll

select这个系统调用的原型如下

第一个参数nfds用来告诉内核 要扫描的socket fd的数量+1 ,select系统调用最大接收的数量是1024,但是如果每次都去扫描1024,实际上的数量并不多,则效率太低,这里可以指定需要扫描的数量。 最大数量为1024,如果需要修改这个数量,则需要重新编译Linux内核源码
第2、3、4个参数分别是readfds、writefds、exceptfds,传递的参数应该是fd_set 类型的引用,内核会检测每个socket的fd, 如果没有读事件,就将对应的fd从第二个参数传入的fd_set中移除,如果没有写事件,就将对应的fd从第二个参数的fd_set中移除,如果没有异常事件,就将对应的fd从第三个参数的fd_set中移除 。这里我们应该 要将实际的readfds、writefds、exceptfds拷贝一份副本传进去,而不是传入原引用,因为如果传递的是原引用,某些socket可能就已经丢失
最后一个参数是等待时间, 传入0表示非阻塞,传入>0表示等待一定时间,传入NULL表示阻塞,直到等到某个socket就绪

FD_ZERO()这个函数将fd_set中的所有bit清0,一般用来进行初始化等。
FD_CLR()这个函数用来将bitmap(fd_set )中的某个bit清0,在客户端异常退出时就会用到这个函数,将fd从fd_set中删除。
FD_ISSET()用来判断某个bit是否被置1了,也就是判断某个fd是否在fd_set中。
FD_SET()这个函数用来将某个fd加入fd_set中,当客户端新加入连接时就会使用到这个函数。

epoll_create系统调用用来创建epfd,会在开辟一块内存空间(epoll的结构空间)。size为epoll上能关注的最大描述符数,不够会进行扩展,size只要>0就行,早期的设计size是固定大小,但是现在size参数没什么用,会自动扩展。
返回值是epfd,如果为-1则说明创建epoll对象失败

第一个参数epfd传入的就是epoll_create返回的epfd。
第二个参数传入对应操作的宏,包括 增删改(EPOLL_CTL_ADD、EPOLL_CTL_DEL、EPOLL_CTL_MOD)
第三个参数传入的是 需要增删改的socket的fd
第四个参数传入的是 需要操作的fd的哪些事件 ,具体的事件可以看后续。
返回值是一个int类型,如果为-1则说明操作失败

第一个参数是epfd,也就是epoll_create的返回值。
第二个参数是一个epoll_event类型的指针,也就是传入的是一个数组指针。 内核会将就绪的socket的事件拷贝到这个数组中,用户可以根据这个数组拿到事件和消息等
第三个参数是maxevents,传入的是 第二个参数的数组的容量
第四个参数是timeout, 如果设为-1一直阻塞直到有就绪数据为止,如果设为0立即返回,如果>0那么阻塞一段时间
返回值是一个int类型,也就是就绪的socket的事件的数量(内核拷贝给用户的events的元素的数量),通过这个数量可以进行遍历处理每个事件

一般需要传入 ev.data.fd 和 ev.events ,也就是fd和需要监控的fd的事件。事件如果需要传入多个,可以通过按位与来连接,比如需要监控读写事件,只需要像如下这样操作即可: ev.events=EPOLLIN | EPOLLOUT 。

LT(水平触发), 默认 的工作模式, 事件就绪后用户可以选择处理和不处理,如果用户不处理,内核会对这部分数据进行维护,那么下次调用epoll_wait()时仍旧会打包出来
ET(边缘触发),事件就绪之后, 用户必须进行处理 ,因为内核把事件打包出来之后就把对应的就绪事件给清掉了, 如果不处理那么就绪事件就没了 。ET可以减少epoll事件被重复触发的次数,效率比LT高。
如果需要设置为边缘触发只需要设置事件为类似 ev.events=EPOLLIN | EPOLLET 即可

select/poll/epoll是nio多路复用技术, 传统的bio无法实现C10K/C100K ,也就是无法满足1w/10w的并发量,在这么高的并发量下,在进行上下文切换就很容易将服务器的负载拉飞。

1.将fd_set从用户态拷贝到内核态
2.根据fd_set扫描内存中的socket的fd的状态,时间复杂度为O(n)
3.检查fd_set,如果有已经就绪的socket,就给对应的socket的fd打标记,那么就return 就绪socket的数量并唤醒当前线程,如果没有就绪的socket就继续阻塞当前线程直到有socket就绪才将当前线程唤醒。
4.如果想要获取当前已经就绪的socket列表,则还需要进行一次系统调用,使用O(n)的时间去扫描socket的fd列表,将已经打上标记的socket的fd返回。

CPU在同一个时刻只能执行一个程序,通过RR时间片轮转去切换执行各个程序。没有被挂起的进程(线程)则在工作队列中排队等待CPU的执行,将进程(线程)从工作队列中移除就是挂起,反映到Java层面的就是线程的阻塞。

什么是中断?当我们使用键盘、鼠标等IO设备的时候,会给主板一个电流信号,这个电流信号就给CPU一个中断信号,CPU执行完当前的指令便会保存现场,然后执行键盘/鼠标等设备的中断程序,让中断程序获取CPU的使用权,在中断程序后又将现场恢复,继续执行之前的进程。

如果第一次没检测到就绪的socket,就要将其进程(线程)从工作队列中移除,并加入到socket的等待队列中。

socket包含读缓冲区+写缓冲区+等待队列(放线程或eventpoll对象)

当从客户端往服务器端发送数据时,使用TCP/IP协议将通过物理链路、网线发给服务器的网卡设备,网卡的DMA设备将接收到的的数据写入到内存中的一块区域(网卡缓冲区),然后会给CPU发出一个中断信号,CPU执行完当前指令则会保存现场,然后网卡的中断程序就获得了CPU的使用权,然后CPU便开始执行网卡的中断程序,将内存中的缓存区中的数据包拿出,判断端口号便可以判断它是哪个socket的数据,将数据包写入对应的socket的读(输入)缓冲区,去检查对应的socket的等待队列有没有等待着的进程(线程),如果有就将该线程(进程)从socket的等待队列中移除,将其加入工作队列,这时候该进程(线程)就再次拥有了CPU的使用权限,到这里中断程序就结束了。

之后这个进程(线程)就执行select函数再次去检查fd_set就能发现有socket缓冲区中有数据了,就将该socket的fd打标记,这个时候select函数就执行完了,这时候就会给上层返回一个int类型的数值,表示已经就绪的socket的数量或者是发生了错误。这个时候就再进行内核态到用户态的切换,对已经打标记的socket的fd进行处理。

将原本1024bit长度的bitmap(fd_set)换成了数组的方式传入 ,可以 解决原本1024个不够用的情况 ,因为传入的是数组,长度可以不止是1024了,因此socket数量可以更多,在Kernel底层会将数组转换成链表。

在十多年前,linux2.6之前,不支持epoll,当时可能会选择用Windows/Unix用作服务器,而不会去选择Linux,因为select/poll会随着并发量的上升,性能变得越来越低,每次都得检查所有的Socket列表。

1.select/poll每次调用都必须根据提供所有的socket集合,然后就 会涉及到将这个集合从用户空间拷贝到内核空间,在这个过程中很耗费性能 。但是 其实每次的socket集合的变化也许并不大,也许就1-2个socket ,但是它会全部进行拷贝,全部进行遍历一一判断是否就绪。

2.select/poll的返回类型是int,只能代表当前的就绪的socket的数量/发生了错误, 如果还需要知道是哪些socket就绪了,则还需要再次使用系统调用去检查哪些socket是就绪的,又是一次O(n)的操作,很耗费性能

1.epoll在Kernel内核中存储了对应的数据结构(eventpoll)。我们可以 使用epoll_create()这个系统调用去创建一个eventpoll对象 ,并返回eventpoll的对象id(epfd),eventpoll对象主要包括三个部分:需要处理的正在监听的socket_fd列表(红黑树结构)、socket就绪列表以及等待队列(线程)。

2.我们可以使用epoll_ctl()这个系统调用对socket_fd列表进行CRUD操作,因为可能频繁地进行CRUD,因此 socket_fd使用的是红黑树的结构 ,让其效率能更高。epoll_ctl()传递的参数主要是epfd(eventpoll对象id)。

3.epoll_wait()这个系统调用默认会 将当前进程(线程)阻塞,加入到eventpoll对象的等待队列中,直到socket就绪列表中有socket,才会将该进程(线程)重新加入工作队列 ,并返回就绪队列中的socket的数量。

socket包含读缓冲区、写缓冲区和等待队列。当使用epoll_ctl()系统调用将socket新加入socket_fd列表时,就会将eventpoll对象引用加到socket的等待队列中, 当网卡的中断程序发现socket的等待队列中不是一个进程(线程),而是一个eventpoll对象的引用,就将socket引用追加到eventpoll对象的就绪列表的尾部 。而eventpoll对象中的等待队列存放的就是调用了epoll_wait()的进程(线程),网卡的中断程序执行会将等待队列中的进程(线程)重新加入工作队列,让其拥有占用CPU执行的资格。epoll_wait()的返回值是int类型,返回的是就绪的socket的数量/发生错误,-1表示发生错误。

epoll的参数有传入一个epoll_event的数组指针(作为输出参数),在调用epoll_wait()返回的同时,Kernel内核还会将就绪的socket列表添加到epoll_event类型的数组当中。

热点内容
无需服务器搭建网站 发布:2025-01-22 21:53:34 浏览:114
旅游青蛙安卓版如何下载 发布:2025-01-22 21:52:51 浏览:317
欧文5的配置是什么 发布:2025-01-22 21:30:23 浏览:108
日志存储数据库 发布:2025-01-22 21:30:07 浏览:474
gulp上传cdn 发布:2025-01-22 21:27:34 浏览:203
emule文件夹 发布:2025-01-22 21:23:23 浏览:981
s7e什么时候推送安卓7 发布:2025-01-22 21:20:59 浏览:203
狐狸的清白脚本分析 发布:2025-01-22 21:19:59 浏览:182
如何破解仿射密码 发布:2025-01-22 21:13:53 浏览:81
百度视频存储 发布:2025-01-22 21:13:11 浏览:168