当前位置:首页 » 操作系统 » mysql数据库分表

mysql数据库分表

发布时间: 2023-10-22 18:31:10

1. Mysql数据库性能优化之分区分表分库

分表是分散数据库压力的好方法。

分表,最直白的意思,就是将一个表结构分为多个表,然后,可以再同一个库里,也可以放到不同的库。

当然,首先要知道什么情况下,才需要分表。个人觉得单表记录条数达到百万到千万级别时就要使用分表了。

分表的分类

**1、纵向分表**

将本来可以在同一个表的内容,人为划分为多个表。(所谓的本来,是指按照关系型数据库的第三范式要求,是应该在同一个表的。)

分表理由:根据数据的活跃度进行分离,(因为不同活跃的数据,处理方式是不同的)

案例:

对于一个博客系统,文章标题,作者,分类,创建时间等,是变化频率慢,查询次数多,而且最好有很好的实时性的数据,我们把它叫做冷数据。而博客的浏览量,回复数等,类似的统计信息,或者别的变化频率比较高的数据,我们把它叫做活跃数据。所以,在进行数据库结构设计的时候,就应该考虑分表,首先是纵向分表的处理。

这样纵向分表后:

首先存储引擎的使用不同,冷数据使用MyIsam 可以有更好的查询数据。活跃数据,可以使用Innodb ,可以有更好的更新速度。

其次,对冷数据进行更多的从库配置,因为更多的操作时查询,这样来加快查询速度。对热数据,可以相对有更多的主库的横向分表处理。

其实,对于一些特殊的活跃数据,也可以考虑使用memcache ,redis之类的缓存,等累计到一定量再去更新数据库。或者mongodb 一类的nosql 数据库,这里只是举例,就先不说这个。

**2、横向分表**

字面意思,就可以看出来,是把大的表结构,横向切割为同样结构的不同表,如,用户信息表,user_1,user_2等。表结构是完全一样,但是,根据某些特定的规则来划分的表,如根据用户ID来取模划分。

分表理由:根据数据量的规模来划分,保证单表的容量不会太大,从而来保证单表的查询等处理能力。

案例:同上面的例子,博客系统。当博客的量达到很大时候,就应该采取横向分割来降低每个单表的压力,来提升性能。例如博客的冷数据表,假如分为100个表,当同时有100万个用户在浏览时,如果是单表的话,会进行100万次请求,而现在分表后,就可能是每个表进行1万个数据的请求(因为,不可能绝对的平均,只是假设),这样压力就降低了很多很多。

延伸:为什么要分表和分区?

日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。

什么是分表?

分表是将一个大表按照一定的规则分解成多张具有独立存储空间的实体表,我们可以称为子表,每个表都对应三个文件,MYD数据文件,.MYI索引文件,.frm表结构文件。这些子表可以分布在同一块磁盘上,也可以在不同的机器上。app读写的时候根据事先定义好的规则得到对应的子表名,然后去操作它。

什么是分区?

分区和分表相似,都是按照规则分解表。不同在于分表将大表分解为若干个独立的实体表,而分区是将数据分段划分在多个位置存放,可以是同一块磁盘也可以在不同的机器。分区后,表面上还是一张表,但数据散列到多个位置了。app读写的时候操作的还是大表名字,db自动去组织分区的数据。

**MySQL分表和分区有什么联系呢?**

1、都能提高mysql的性高,在高并发状态下都有一个良好的表现。

2、分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等。

3、分表技术是比较麻烦的,需要手动去创建子表,app服务端读写时候需要计算子表名。采用merge好一些,但也要创建子表和配置子表间的union关系。

4、表分区相对于分表,操作方便,不需要创建子表。

我们知道对于大型的互联网应用,数据库单表的数据量可能达到千万甚至上亿级别,同时面临这高并发的压力。Master-Slave结构只能对数据库的读能力进行扩展,写操作还是集中在Master中,Master并不能无限制的挂接Slave库,如果需要对数据库的吞吐能力进行进一步的扩展,可以考虑采用分库分表的策略。

**1、分表**

在分表之前,首先要选中合适的分表策略(以哪个字典为分表字段,需要将数据分为多少张表),使数据能够均衡的分布在多张表中,并且不影响正常的查询。在企业级应用中,往往使用org_id(组织主键)做为分表字段,在互联网应用中往往是userid。在确定分表策略后,当数据进行存储及查询时,需要确定到哪张表里去查找数据,

数据存放的数据表 = 分表字段的内容 % 分表数量

**2、分库**

分表能够解决单表数据量过大带来的查询效率下降的问题,但是不能给数据库的并发访问带来质的提升,面对高并发的写访问,当Master无法承担高并发的写入请求时,不管如何扩展Slave服务器,都没有意义了。我们通过对数据库进行拆分,来提高数据库的写入能力,即所谓的分库。分库采用对关键字取模的方式,对数据库进行路由。

数据存放的数据库=分库字段的内容%数据库的数量

**3、即分表又分库**

数据库分表可以解决单表海量数据的查询性能问题,分库可以解决单台数据库的并发访问压力问题。

当数据库同时面临海量数据存储和高并发访问的时候,需要同时采取分表和分库策略。一般分表分库策略如下:

中间变量 = 关键字%(数据库数量*单库数据表数量)

库 = 取整(中间变量/单库数据表数量)

表 = (中间变量%单库数据表数量)

实例:

1、分库分表

很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分库与分表是一个很不错的解决途径,也就是性能优化途径,现在的案例是我们有一个1000多万条记录的用户表members,查询起来非常之慢,同事的做法是将其散列到100个表中,分别从members0到members99,然后根据mid分发记录到这些表中,牛逼的代码大概是这样子:

复制代码 代码如下:

<?php

for($i=0;$i< 100; $i++ ){

//echo "CREATE TABLE db2.members{$i} LIKE db1.members
";

echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}
";

}

?>

2、不停机修改mysql表结构

同样还是members表,前期设计的表结构不尽合理,随着数据库不断运行,其冗余数据也是增长巨大,同事使用了下面的方法来处理:

先创建一个临时表:

/*创建临时表*/

CREATE TABLE members_tmp LIKE members

然后修改members_tmp的表结构为新结构,接着使用上面那个for循环来导出数据,因为1000万的数据一次性导出是不对的,mid是主键,一个区间一个区间的导,基本是一次导出5万条吧,这里略去了

接着重命名将新表替换上去:

/*这是个颇为经典的语句哈*/

RENAME TABLE members TO members_bak,members_tmp TO members;

就是这样,基本可以做到无损失,无需停机更新表结构,但实际上RENAME期间表是被锁死的,所以选择在线少的时候操作是一个技巧。经过这个操作,使得原先8G多的表,一下子变成了2G多。

2. 浅谈mysql数据库分库分表那些事-亿级数据存储方案

mysql分库分表一般有如下场景

其中1,2相对较容易实现,本文重点讲讲水平拆表和水平拆库,以及基于mybatis插件方式实现水平拆分方案宽兄落地。

在 《聊一聊扩展字段设计》 一文中有讲解到基于KV水平存储扩展字段方案,这就是非常典型的可以水平分表的场景。主表和kv表是一对N关系,随着主表数据量增长,KV表最大N倍线性增长。

这里我们以分KV表水平拆分为场景

对于kv扩展字段查询,只会根据id + key 或者 id 为条件的方式查询,所以这里我们可以按照id 分片即可

分512张表(实际场景具体分多少表还得根据字段增加的频次而定)

分表后表名为kv_000 ~ kv_511

id % 512 = 1 .... 分到 kv_001,

id % 512 = 2 .... 分到 kv_002

依次类推!

水平分表相对比较容易,后面会讲到基于mybatis插件实现方案

场景:以下我们基于博客文章表分库场景来分析

目标:

表结构如下(节选部分字段):

按照user_id sharding

假如分1024个库,按照user_id % 1024 hash

user_id % 1024 = 1 分到db_001库

user_id % 1024 = 2 分到db_002库

依次类推

目前是2个节点,假如后期达到瓶颈,我们可以增加至4个节点

最多可以增加只1024个节点,性能线性增长

对于水平分表/分库后,非shardingKey查询首先得考虑到

基于mybatis分库分表,一般常用的一种是基于spring AOP方式, 另外一种基于mybatis插件。其实两种方式思路差不多。

为了比较直观解决这个问题,我分别在Executor 和StatementHandler阶段2个晌陵拦截器

实现动态数据源慎谨袭获取接口

测试结果如下

由此可知,我们需要在Executor阶段 切换数据源

对于分库:

原始sql:

目标sql:

其中定义了三个注解

@useMaster 是否强制读主

@shardingBy 分片标识

@DB 定义逻辑表名 库名以及分片策略

1)编写entity

Insert

select

以上顺利实现mysql分库,同样的道理实现同时分库分表也很容易实现。

此插件具体实现方案已开源: https://github.com/bytearch/mybatis-sharding

目录如下:

mysql分库分表,首先得找到瓶颈在哪里(IO or CPU),是分库还是分表,分多少?不能为了分库分表而拆分。
原则上是尽量先垂直拆分 后 水平拆分。
以上基于mybatis插件分库分表是一种实现思路,还有很多不完善的地方,
例如:

3. mysql表数据量太大,达到了1亿多条数据,除了分库分表之外,还有没有其他的解决方式

mysql在常规配置下,一般只能承受2000万的数据量(同时读写,且表中有大文本字段,单台服务逗塌磨器)。现在超过1亿,并不断增加的情况下,建议如下处理:

1分表。可以按时间,或衫旦按一定的规则拆分,做到查询某一条数据库,尽量在一个子表中即可。这是最有效的方法

2读写分离。尤其是写入,放在新表中,定期进行同步。如果其中记录不断有update,最好将写的山斗数据放在redis中,定期同步

3表的大文本字段分离出来,成为独立的新表。大文本字段,可以使用NOSQL数据库

4优化架构,或优化SQL查询,避免联表查询,尽量不要用count(*),in,递归等消耗性能的语句

5用内存缓存,或在前端读的时候,增加缓存数据库。重复读取时,直接从缓存中读取。

上面是低成本的管理方法,基本几台服务器即可搞定,但是管理起来麻烦一些。

当然,如果整体数据量特别大的话,也不在乎投入费用的话,用集群吧,用TIDB吧

4. mysql数据库要放1亿条信息怎样分表

MySQL表最大能达到多少?

MySQL 3.22限制的表大小为4GB。由于在MySQL 3.23中使用了MyISAM存储引擎,最大表尺寸增加到了65536TB(2567 – 1字节)。由于允许的表尺寸更大,MySQL数据库的最大有效表尺寸通常是由操作系统对文件大小的限制决定的,而不是由MySQL内部限制决定的。

InnoDB存储引擎将InnoDB表保存在一个表空间内,该表空间可由数个文件创建。这样,表的大小就能超过单独文件的最大容量。表空间可包括原始磁盘分区,从而使得很大的表成为可能。表空间的最大容量为64TB。

在下面的表格中,列出了一些关于操作系统文件大小限制的示例。这仅是初步指南,并不是最终的。要想了解最新信息,请参阅关于操作系统的文档。

操作系统

文件大小限制

linux 2.2-Intel 32-bit

2GB (LFS: 4GB)

Linux 2.4+

(使用 ext3 文件系统) 4TB

Solaris 9/10

16TB

NetWare w/NSS 文件系统

8TB

win32 w/ FAT/FAT32

2GB/4GB

win32 w/ NTFS

2TB(可能更大)

MacOS X w/ HFS+

2TB

在Linux 2.2平台下,通过使用对ext2文件系统的大文件支持(LFS)补丁,可以获得超过2GB的MyISAM表。在Linux 2.4平台下,存在针对ReiserFS的补丁,可支持大文件(高达2TB)。目前发布的大多数Linux版本均基于2.4内核,包含所有所需的LFS补丁。使用JFS和XFS,petabyte(千兆兆)和更大的文件也能在Linux上实现。然而,最大可用的文件容量仍取决于多项因素,其中之一就是用于存储MySQL表的文件系统。

关于Linux中LFS的详细介绍,请参见Andreas Jaeger的“Linux中的大文件支持”页面:http://www.suse.de/~aj/linux_lfs.html。

Windows用户请注意: FAT和VFAT (FAT32)不适合MySQL的生产使用。应使用NTFS。

在默认情况下,MySQL创建的MyISAM表允许的最大尺寸为4GB。你可以使用SHOW TABLE STATUS语句或myisamchk -dv tbl_name检查表的最大尺寸。

1
mysql > show table status like 't_user';

如果需要使用大于4GB的MyISAM表(而且你的操作系统支持大文件),可使用允许AVG_ROW_LENGTH和MAX_ROWS选项的CREATE TABLE语句。

创建了表后,也可以使用ALTER TABLE更改这些选项,以增加表的最大允许容量。

以下语句将表的最大容量设成了1000G(1TB)

1
mysql > alter table t_user max_rows = 200000000000 avg_row_length = 50;

处理MyISAM表文件大小的其他方式:

如果你的大表是只读的,可使用myisampack压缩它。myisampack通常能将表压缩至少50%,因而,从结果上看,可获得更大的表。此外,myisampack还能将多个表合并为1个表。

MySQL包含一个允许处理MyISAM表集合的MERGE库,这类MyISAM表具有与单个MERGE表相同的结构。

下面是一个例子:

这是一个存储天气的表:

mysql> describe weather; +-----------+--------------+------+-----+------------+-------+ | Field | Type | Null | Key | Default | Extra | +-----------+--------------+------+-----+------------+-------+ | city | varchar(100) | | MUL | | | | high_temp | tinyint(4) | | | 0 | | | low_temp | tinyint(4) | | | 0 | | | the_date | date | | | 0000-00-00 | | +-----------+--------------+------+-----+------------+-------+ 4 rows in set (0.01 sec)

看看它的容量大小限制,我们使用 SHOW TABLE STATUS

mysql> show table status like 'weather' \G *************************** 1. row *************************** Name: weather Type: MyISAM Row_format: Dynamic Rows: 0 Avg_row_length: 0 Data_length: 0 Max_data_length: 4294967295 Index_length: 1024 Data_free: 0 Auto_increment: NULL Create_time: 2003-03-03 00:43:43 Update_time: 2003-03-03 00:43:43 Check_time: 2003-06-14 15:11:21 Create_options: Comment: 1 row in set (0.00 sec)

注意Max_data_length 为4GB. 我们把它改大:

mysql> alter table weather max_rows = 200000000000 avg_row_length = 50; Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> show table status like 'weather' \G *************************** 1. row *************************** Name: weather Type: MyISAM Row_format: Dynamic Rows: 0 Avg_row_length: 0 Data_length: 0 Max_data_length: 1099511627775 Index_length: 1024 Data_free: 0 Auto_increment: NULL Create_time: 2003-06-17 13:12:49 Update_time: 2003-06-17 13:12:49 Check_time: NULL Create_options: max_rows=4294967295 avg_row_length=50 Comment: 1 row in set (0.00 sec)

现在的表可以存储更多的内容了.

是否行数太多?

修改容量后,你会发现(上面例子)Create_options 中多了最大行数的限制4294967295,是的,它仍然有一定的限制,但现在的限制是行数,并不是表的容量大小了。也就是说你的最大行数不能超过4294967295.

为什么?

因为系统是32位,如果你移到64位的系统里,这个行数限制就会增加.

5. mysql分库分表后如何统计

数据库分库分表是缓解数据库服务器压力和增加并发量的途径之一,但是随着分库分表之后,也不可避免的带来了一些问题,很显而易见的问题就是如何解决分库后的查询统计。分库之后没有SQL可以用了,简单的过滤后再合并还可以做,但分组都会很麻烦,必须把分库分组汇总结集再分组汇总。这对很多java应用程序员来讲是个挑战。但是,数据量太大大,不分库也不行,进退两难。

这时候,采用集算器来做后一步的汇总计算就很容易,比如刚才说的分组汇总问题,写出来只要这么几行:

这里实现分组的代码还考虑了让分库并行执行SQL。

利用集算器实现分库汇总里包含几个典型例子来说明分库汇总的用法,跨库数据表的运算 是有关分库后统计查询的更详细解释,还有讲解视频分库后的统计查询梳理要点和难点。集算器还很容易嵌入到Java应用程序中,Java 如何调用 SPL 脚本 有使用和获得它的方法。关于集算器安装使用、获得免费授权和相关技术资料,可以参见 集算器如何使用 。

6. mysql 分区和分表 哪个好

mysql 分区和分表好
一,什么是mysql分表,分区
什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看mysql分表的3种方法
什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上

一,先说一下为什么要分表
当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
根据个人经验,mysql执行一个sql的过程如下:
1,接收到sql;2,把sql放到排队队列中 ;3,执行sql;4,返回执行结果。在这个执行过程中最花时间在什么地方呢?第一,是排队等待的时间,第二,sql的执行时间。其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。

mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。如果数据太多,一次执行的时间太长,等待的时间就越长,这也是我们为什么要分表的原因。
二,分表
1,做mysql集群,例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等
有人会问mysql集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量,举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。所以我把它列到了分表的范围以内,我做过一些mysql的集群:
linux mysql proxy 的安装,配置,以及读写分离
mysql replication 互为主从的安装及配置,以及数据同步
优点:扩展性好,没有多个分表后的复杂操作(php代码)
缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。
2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表
这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。以聊天信息表为例:
我事先建100个这样的表,message_00,message_01,message_02..........message_98,message_99.然后根据用户的ID来判断这个用户的聊天信息放到哪张表里面,你可以用hash的方式来获得,可以用求余的方式来获得,方法很多,各人想各人的吧。下面用hash的方法来获得表名:
查看复制打印?
<?php
function get_hash_table($table,$userid) {
$str = crc32($userid);
if($str<0){
$hash = "0".substr(abs($str), 0, 1);
}else{
$hash = substr($str, 0, 2);
}

return $table."_".$hash;
}

echo get_hash_table('message','user18991'); //结果为message_10
echo get_hash_table('message','user34523'); //结果为message_13
?>
说明一下,上面的这个方法,告诉我们user18991这个用户的消息都记录在message_10这张表里,user34523这个用户的消息都记录在message_13这张表里,读取的时候,只要从各自的表中读取就行了。
优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间
缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。
3,利用merge存储引擎来实现分表
我觉得这种方法比较适合,那些没有事先考虑,而已经出现了得,数据查询慢的情况。这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了,现在一张表要分成几十张表,甚至上百张表,这样sql语句是不是要重写呢?举个例子,我很喜欢举子
mysql>show engines;的时候你会发现mrg_myisam其实就是merge。
查看复制打印?
mysql> CREATE TABLE IF NOT EXISTS `user1` (
-> `id` int(11) NOT NULL AUTO_INCREMENT,
-> `name` varchar(50) DEFAULT NULL,
-> `sex` int(1) NOT NULL DEFAULT '0',
-> PRIMARY KEY (`id`)
-> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE IF NOT EXISTS `user2` (
-> `id` int(11) NOT NULL AUTO_INCREMENT,
-> `name` varchar(50) DEFAULT NULL,
-> `sex` int(1) NOT NULL DEFAULT '0',
-> PRIMARY KEY (`id`)
-> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO `user1` (`name`, `sex`) VALUES('张映', 0);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO `user2` (`name`, `sex`) VALUES('tank', 1);
Query OK, 1 row affected (0.00 sec)

mysql> CREATE TABLE IF NOT EXISTS `alluser` (
-> `id` int(11) NOT NULL AUTO_INCREMENT,
-> `name` varchar(50) DEFAULT NULL,
-> `sex` int(1) NOT NULL DEFAULT '0',
-> INDEX(id)
-> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> select id,name,sex from alluser;
+----+--------+-----+
| id | name | sex |
+----+--------+-----+
| 1 | 张映 | 0 |
| 1 | tank | 1 |
+----+--------+-----+
2 rows in set (0.00 sec)

mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES('tank2', 0);
Query OK, 1 row affected (0.00 sec)

mysql> select id,name,sex from user2
-> ;
+----+-------+-----+
| id | name | sex |
+----+-------+-----+
| 1 | tank | 1 |
| 2 | tank2 | 0 |
+----+-------+-----+

热点内容
战地4亚洲服务器为什么被攻击 发布:2025-01-22 23:45:42 浏览:668
javascript反编译 发布:2025-01-22 23:37:57 浏览:429
夏天来了你的巴氏奶存储对吗 发布:2025-01-22 23:37:56 浏览:203
求最大值c语言 发布:2025-01-22 23:22:35 浏览:247
一键清理系统脚本 发布:2025-01-22 23:21:10 浏览:59
防疫宣传脚本 发布:2025-01-22 23:21:05 浏览:632
编译程序编译后是什么语言 发布:2025-01-22 23:20:08 浏览:368
电脑文件夹设密码 发布:2025-01-22 23:17:21 浏览:7
anyconnect服务器地址2018 发布:2025-01-22 23:05:56 浏览:530
教师资格面试试讲脚本 发布:2025-01-22 22:51:37 浏览:684