当前位置:首页 » 操作系统 » 推荐系统算法

推荐系统算法

发布时间: 2022-02-10 15:05:45

㈠ 推荐系统算法

基 于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料。
在基于内容的推荐系统中,项目或对象是通过相关的特征的属性来定义,系统基于用户评价对象 的特征,学习用户的兴趣,考察用户资料与待预测项目的相匹配程度。用户的资料模型取决于所用学习方法,常用的有决策树、神经网络和基于向量的表示方法等。 基于内容的用户资料是需要有用户的历史数据,用户资料模型可能随着用户的偏好改变而发生变化。

㈡ 推荐算法有哪些

推荐算法大致可以分为三类:基于内容的推荐算法、协同过滤推荐算法和基于知识的推荐算法。 基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。 协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD,Matrix Factorization等,这种方法训练过程比较长,但是训练完成后,推荐过程比较快。 最后一种方法是基于知识的推荐算法,也有人将这种方法归为基于内容的推荐,这种方法比较典型的是构建领域本体,或者是建立一定的规则,进行推荐。 混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式尽心融合。 当然,推荐系统还包括很多方法,其实机器学习或者数据挖掘里面的方法,很多都可以应用在推荐系统中,比如说LR、GBDT、RF(这三种方法在一些电商推荐里面经常用到),社交网络里面的图结构等,都可以说是推荐方法。

㈢ 如何评价一个好的推荐系统算法 – 我爱机器学习

如何更好地掌握机器学习Colorado是伯克利大学的在读博士,同时也是Metacademy的创始人。Metacademy是一个优秀的开源平台,许多专业人员共同在这个平台上编写wiki文章。目前,这些文章主要围绕着机器学习和人工智能这两个主题。在Colorado的建议中,更好地学习机器学习的方法就是不断的通过书本学习。他认为读书的目的就是让心中有书。一个博士在读生给出这样的建议并不令人惊讶,以前本站可能还推荐过类似的建议。这个建议还可以,但我不认为适用每个人。如果你是个开发者,想实现机器学习的算法。下面列出的书籍是一个很好的参考,可以从中逐步学习。机器学习路线图他的关于机器学习的路线图分为5个级别,每个级别都对应一本书必须要掌握的书。这5个级别如下:Level0(新手):阅读《DataSmart:》。需要了解电子表格、和一些算法的高级数据流。Level1(学徒):阅读《MachineLearningwithR》。学习在不同的情况下用R语言应用不同的机器学习算法。需要一点点基本的编程、线性代数、微积分和概率论知识。Level2(熟练工):阅读《》。从数学角度理解机器学习算法的工作原理。理解并调试机器学习方法的输出结果,同时对机器学习的概念有更深的了解。需要有算法、较好的线性代数、一些向量积分、一些算法实现经验。Level3(大师):阅读《ProbabilisticGraphicalModels:PrinciplesandTechniques》。深入了解一些高级主题,如凸优化、组合优化、概率论、微分几何,及其他数学知识。深入了解概率图模型,了解何时应该使用以及如何解释其输出结果。Leval4(宗师):随便去学吧,记得反馈社区。Colorado针对每个级别中列出的书中章节阅读建议,并给出了建议去了解的相关顶级项目。Colorado后来重新发布了一篇博客,其中对这个路线图做了一点修改。他移除了最后一个级别,并如下定义了新的级别:好奇者、新手、学徒、熟练工、大师。他说道,Level0中的机器学习好奇者不应该阅读相关书籍,而是浏览观看与机器学习有关的顶级视频。机器学习中被忽视的主题ScottLocklin也阅读了Colorado的那篇博客,并从中受到了启发,写了一篇相应的文章,名为“机器学习中被忽视的想法”(文中有BorisArtzybasheff绘制的精美图片)。Scott认为Colorado给出的建议并没有充分的介绍机器学习领域。他认为很少有书籍能做到这一点,不过他还是喜欢PeterFlach所着的《MachineLearning:》这本书,因为书中也接触了一些隐晦的技术。Scott列出了书本中过分忽视的内容。如下所示:实时学习:对流数据和大数据很重要,参见VowpalWabbit。强化学习:在机器人方面有过讨论,但很少在机器学习方面讨论。“压缩”序列预测技术:压缩数据发现学习模式。参见CompLearn。面向时间序列的技术。一致性预测:为实时学习精确估计模型。噪声背景下的机器学习:如NLP和CV。特征工程:机器学习成功的关键。无监督和半监督学习。这个列表很好的指出了机器学习中没有注意到的领域。最后要说明的是,我自己也有一份关于机器学习的路线图。与Colorado一样,我的路线图仅限于分类/回归类型的监督机器学习,但还在完善中,需要进一步的调查和添加所有感兴趣的主题。与前面的“读这些书就可以了”不同,这个路线图将会给出详细的步骤。

㈣ 推荐系统技术评估及高效算法值得看吗

我们把推荐当作是一个排名任务,这表示我们主要感兴趣的是一个相对较少的项,我们认为这些项最相关并把它呈现给用户。这就是众所周知的Top-k推荐。
把它和评级预测做比较,如Netflix的竞赛。2007年,Yehuda Koren(此次比赛的一个胜出者)指出,人们对使用RMSE作为一个指标并赞成使用RMSE指标存有疑惑,我们应该使用一个特定的排名指标。
然而,在我们有限的实验中,我们发现RMSE指标并不适用于排名。对我们而言,当调整用户留存率时,用于RMSE的矩阵分解优化表现的相当不错,但当从所有的可用项选择推荐时,却彻底地失败了。
我们认为原因是训练会集中于评分较高的项,同时对于这些项产生一个很好的拟合结果。而对于评分较低的项,在损失影响方面没有太大的意义。结果,对他们的预测会不平衡,使得与实际得分相比,一些得分较高,一些得分较低。最后,靠前的条目将显示在热门推荐一栏中,因而破坏了推荐结果。
换句话说,RMSE指标不能辨别真实的内情,而且我们需要特定的排名指标。

㈤ 怎么在推荐系统中使用svd算法

SVD算法 SVD算法可用来求解大多数的线性最小二乘法问题. SVD 算法基于如下分解定理:对任 意的矩阵 Am ×n ,当其行数 m 大于等于列数 n 时,可以分解为正交矩阵 Um ×n , 非负对角矩阵 Wn×n以及正交矩阵Vn×n的转置的乘积,即 Am×n = Um×n ·[diag(

㈥ 商品推荐系统基本方法

基本的都是协同过滤吧,有基于用户的协同过滤,基于商品的协同过滤,当让也有将两者全都纳入其中的

㈦ 求推荐系统STE算法的详细信息

•SIGIR’09July.2009Boston USA•上一篇SoRecUsing Probabilistic Matrix Factorization的论文发表9个月后•HaoMa,HaixuanYang, Michael R.Lyu,Irwin King•Dept. of Computer Scienceand Engineering•The Chinese University ofHong Kong

㈧ 谁有基于用户的推荐系统或者协同过滤的算法和代码分析

个大数据的大神给个 基于用户的推荐系统或者协同过滤的算法和代码分析啊
我有部分代码但是不知道怎么在Eclipse上实现 求解答啊
1.public class AggregateAndRecommendRecer extends Recer<VarLongWritable,VectorWritable,VarLongWritable,RecommendedItemsWritable>{
...
public viod rece (VarLongWritable key,Iterable<VectorWritable>values,Context context)throws IOException,InterruptedException{
Vector recommendationVector=null;
for(VectorWritable vectorWritable:values){
recommendationVector=recommendationVector==null?
vectorWritable.get();
recommendationVector.plus(bectorWritable.get());
}
Queue<RecommendedItem> topItems=new PriorityQueue<RecommendedItem>(recommendationsPerUser+1,Collections.reverseOrder(.getInstance()));
Iterator<Vector.Element> recommendationVectorIterator=recommendationVector.iterateNonZero();
while(recommendationVectorIterator.hasNext()){
vector.Element element=recommendationVectorIterator.next();
int index=element.index();

㈨ 推荐系统的主要推荐方法

基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料。在基于内容的推荐系统中,项目或对象是通过相关的特征的属性来定义,系统基于用户评价对象 的特征,学习用户的兴趣,考察用户资料与待预测项目的相匹配程度。用户的资料模型取决于所用学习方法,常用的有决策树、神经网络和基于向量的表示方法等。 基于内容的用户资料是需要有用户的历史数据,用户资料模型可能随着用户的偏好改变而发生变化。
基于内容推荐方法的优点是:1)不需要其它用户的数据,没有冷开始问题和稀疏问题。2)能为具有特殊兴趣爱好的用户进行推荐。3)能推荐新的或不是很流行的项目,没有新项目问题。4)通过列出推荐项目的内容特征,可以解释为什么推荐那些项目。5)已有比较好的技术,如关于分类学习方面的技术已相当成熟。
缺点是要求内容能容易抽取成有意义的特征,要求特征内容有良好的结构性,并且用户的口味必须能够用内容特征形式来表达,不能显式地得到其它用户的判断情况。 协同过滤推荐 (Collaborative Filtering Recommendation)技术是推荐系统中应用最早和最为成功的技术之一。它一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后 利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐。协同过滤最大优 点是对推荐对象没有特殊的要求,能处理非结构化的复杂对象,如音乐、电影。
协同过滤是基于这样的假设:为一用户找到他真正感兴趣的内容的好方法是首先找到与此用户有相似兴趣的其他用户,然后将他们感兴趣的内容推荐给此用 户。其基本思想非常易于理解,在日常生活中,我们往往会利用好朋友的推荐来进行一些选择。协同过滤正是把这一思想运用到电子商务推荐系统中来,基于其他用 户对某一内容的评价来向目标用户进行推荐。
基于协同过滤的推荐系统可以说是从用户的角度来进行相应推荐的,而且是自动的即用户获得的推荐是系统从购买模式或浏览行为等隐式获得的,不需要用户努力地找到适合自己兴趣的推荐信息,如填写一些调查表格等。
和基于内容的过滤方法相比,协同过滤具有如下的优点:1) 能够过滤难以进行机器自动内容分析的信息,如艺术品,音乐等。2) 共享其他人的经验,避免了内容分析的不完全和不精确,并且能够基于一些复杂的,难以表述的概念(如信息质量、个人品味)进行过滤。3) 有推荐新信息的能力。可以发现内容上完全不相似的信息,用户对推荐信息的内容事先是预料不到的。这也是协同过滤和基于内容的过滤一个较大的差别,基于内容的过滤推荐很多都是用户本来就熟悉的内容,而协同过滤可以发现用户潜在的但自己尚未发现的兴趣偏好。4) 能够有效的使用其他相似用户的反馈信息,较少用户的反馈量,加快个性化学习的速度。
虽然协同过滤作为一种典型的推荐技术有其相当的应用,但协同过滤仍有许多的问题需要解决。最典型的问题有稀疏问题(Sparsity)和可扩展问题(Scalability)。 基于关联规则的推荐 (Association Rule-based Recommendation)是以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零 售业中已经得到了成功的应用。管理规则就是在一个交易数据库中统计购买了商品集X的交易中有多大比例的交易同时购买了商品集Y,其直观的意义就是用户在购 买某些商品的时候有多大倾向去购买另外一些商品。比如购买牛奶的同时很多人会同时购买面包。
算法的第一步关联规则的发现最为关键且最耗时,是算法的瓶颈,但可以离线进行。其次,商品名称的同义性问题也是关联规则的一个难点。 由于各种推荐方法都有优缺点,所以在实际中,组合推荐(Hybrid Recommendation)经常被采用。研究和应用最多的是内容推荐和协同过滤推荐的组合。最简单的做法就是分别用基于内容的方法和协同过滤推荐方法 去产生一个推荐预测结果,然后用某方法组合其结果。尽管从理论上有很多种推荐组合方法,但在某一具体问题中并不见得都有效,组合推荐一个最重要原则就是通 过组合后要能避免或弥补各自推荐技术的弱点。
在组合方式上,有研究人员提出了七种组合思路:1)加权(Weight):加权多种推荐技术结果。2)变换(Switch):根据问题背景和实际情况或要求决定变换采用不同的推荐技术。3)混合(Mixed):同时采用多种推荐技术给出多种推荐结果为用户提供参考。4)特征组合(Feature combination):组合来自不同推荐数据源的特征被另一种推荐算法所采用。5)层叠(Cascade):先用一种推荐技术产生一种粗糙的推荐结果,第二种推荐技术在此推荐结果的基础上进一步作出更精确的推荐。6)特征扩充(Feature augmentation):一种技术产生附加的特征信息嵌入到另一种推荐技术的特征输入中。7)元级别(Meta-level):用一种推荐方法产生的模型作为另一种推荐方法的输入。

㈩ spark中有哪些推荐系统算法

看清楚dbscan算法中有两个关键的参数是
eps,
and
min
group
threshold.
直观的想法是,如果你的eps很大,min-group-threshold
也很大的时候,那你得到的聚类的类数目就会少很多,那你搜索的时候就可能很快收敛。

热点内容
数据库的列名 发布:2025-01-10 14:03:39 浏览:522
php安装方法 发布:2025-01-10 13:53:51 浏览:606
linux网络文件夹共享 发布:2025-01-10 13:53:08 浏览:293
matlab编译cpp 发布:2025-01-10 13:51:31 浏览:980
phppython混合编程 发布:2025-01-10 13:46:43 浏览:853
android转圈 发布:2025-01-10 13:45:59 浏览:202
计算机等级考试数据库 发布:2025-01-10 13:40:51 浏览:100
华为双摄算法 发布:2025-01-10 13:37:06 浏览:46
微信公众平台营销源码 发布:2025-01-10 13:22:09 浏览:612
求职数据库 发布:2025-01-10 13:05:43 浏览:443