当前位置:首页 » 操作系统 » linux页表

linux页表

发布时间: 2023-10-16 04:04:20

linux操作系统具有哪些特点

LINUX系统的主要特点。\x0d\x0a1、开放性:特别是遵循开放系统互连(OSI)国际标准。\x0d\x0a2、多用户:操作系统资源可以被不同用户使用,每个用户对自己的资源(例如:文件、设备)有特定的权限,互不影响。\x0d\x0a3、多任务:计算机同时执行多个程序,而同时各个程序的运行互相独立。\x0d\x0a4、良好的用户界面:Linux向用户提供了两种界面:用户界面和系统调用。Linux还为用户提供了图形用户界面。它利用鼠标、菜单、窗口、滚劢条等设施,给用户呈现一个直观、易操作、交互性强的友好的图形化界面。\x0d\x0a5、设备独立性:操作系统把所有外部设备统一当作成文件来看待,只要安装驱劢程序,任何用户都可以象使用文件一样,操纵、使用这些设备。Linux是具有设备独立性的操作系统,内核具有高度适应能力。\x0d\x0a6、提供了丰富的网络功能:完善的内置网络是Linux一大特点。\x0d\x0a7、可靠的安全系统:Linux采取了许多安全技术措施,包括对读、写控制、带保护的子系统、审计跟踪、核心授权等,这为网络多用户环境中的用户提供了必要的安全保障。\x0d\x0a8、良好的可移植性:将操作系统从一个平台转移到另一个平台使它仍然能_其自身的方式运行的能力。Linux是一种可移植的操作系统,能够在从微型计算机到大型计算机的任何环境中和任何平台上运行。

⑵ Linux存储管理方式

这种方式中,将用户程序的地址空间,注意,是 用户程序的地址空间 分为若干个固定大小的区域,成为“页”或“页面”。我们可以知道,这也页其实是不存在的,只是一种划分内存空间的方法。也就是说,这种方式将用户的程序 “肢解” 了,分成很多个小的部分,每个部分称为一个“页”。

将逻辑地址的前n位作为页号,后面32-n位作为页内偏移量。

由于进程的最后一页经常装不满一个块,从而形成了不可利用的碎片,称之为 “页内碎片”

作用:实现页号到物理号的地址映射。

页表是记录逻辑空间(虚拟内存)中每一页在内存中对应的物理块号。但并非每一页逻辑空间都会实际对应着一个物理块,只有实际驻留在物理内存空间中的页才会对应着物理块。

系统会为每一个进程建立一张页表,页表是需要一直驻留在物理内存中的(多级页表除外),另外页表的起址和长度存放在 PCB(Process Control Block)进程控制结构体中。

可以在页表的表项中设置相关的权限控制字段,例如设置存取控制字段,用于保护该存储块的读写;若存取控制字段为2位,则可以设置读/写、只读和只执行等存取方式。

物理块是实实在在存在于内存中的:

由于执行频率高,要求效率比较高,需要使用硬件实现。

在系统中设置一个 页表寄存器(PTR) ,其中存放页表在内存的起始地址和页表的长度。平时进程未执行的时候,页表的起始地址和页表长度放在本进程的PCB中。当调度程序调度到某个进程的时候,才将这两个数据装入 页表寄存器

变换过程:

快表的变换机构

为了提高地址变换速度,可在地址变换机构中增设一个具有并行查询能力的特殊高速缓冲寄存器,又称为"联想寄存器"或者“快表”。俗称TLB。

快表与页表的功能类似,其实就是将一部分页表存到 CPU 内部的高速缓冲存储器 Cache。CPU 寻址时先到快表查询相应的页表项形成物理地址,如果查询不到,则到内存中查询,并将对应页表项调入到快表中。但,如果快表的存储空间已满,则需要通过算法找到一个暂时不再需要的页表项,将它换出内存。

由于成本的关系,快表不可能做得很大,通常只存放 16~512 个页表项,这对中、小型作业来说,已有可能把全部页表项放在快表中;但对于大型作业而言,则只能将其一部分页表项放入其中。由于对程序和数据的访问往往带有局限性,因此,据统计,从快表中能找到所需页表项的概率可达 90% 以上。这样,由于增加了地址变换机构而造成的速度损失可减少到 10% 以下,达到了可接受的程度。

我们可以采用这样两个方法来解决这一问题:

① 对于页表所需的内存空间,可采用离散分配方式,以解决难以找到一块连续的大内存空间的问题;

只将当前需要的部分页表项调入内存,其余的页表项仍驻留在磁盘上,需要时再调入。

二级页表的页表项:

过程:

在采用两级页表结构的情况下,对于正在运行的进程,必须将其外层页表调入内存,而对于内页表则只需调入一页或几页。为了表征某页的页表是否已经调入内存,还应在外层页表项中增设一个状态位 S,其值若为 0,表示该页表分页不在内存中,否则说明其分页已调入内存。进程运行时,地址变换机构根据逻辑地址中的 P1去查找外层页表;若所找到的页表项中的状态位为 0,则产生一个中断信号,请求 OS 将该页表分页调入内存。

多级页表和二级页表类似。多级页表和二级页表是为了节省物理内存空间。使得页表可以在内存中离散存储。(单级页表为了随机访问必须连续存储,如果虚拟内存空间很大,就需要很多页表项,就需要很大的连续内存空间,但是多级页表不需要。)

为什么引入分段存储管理?

引入效果:

它将用户程序的地址空间分为若干个大小不同的的段,每个段可以定义一组完整的信息。

段号表示段名,每个段都从0开始编址,并且采用一段连续的地址空间。

在该地址结构中,允许一个作业最长有64K个段,每个段的最大长度为64KB。

在分段式存储管理系统中,为每一个分段分配一个连续的分区。进程的各个段,可以离散地装入内存中不同的分区中。

作用:实现从逻辑地址到物理内存区的映射。

为了保证程序能够正常运行,就必须能够从物理内存中找出每个逻辑段所对应的位置。为此在系统中会为每一个进程建立一张 段表 。每个段在表中有一个表项,其中记录了该段在内存中的起始地址和段的长度。一般将段表保存在内存中。

在配置了段表之后,执行的过程可以通过查找段表,找到每一个段所对应的内存区。

为了实现进程从逻辑地址到物理地址的变换功能,在系统设置了段表寄存器,用于存放段表的起始地址和段表长度TL。

在进行地址变换时,系统将逻辑地址中的段号与段表长度TL 进行比较。若 S > TL,表示段号太大,是访问越界,于是产生越界中断信号。若未越界,则根据段表的始址和该段的段号,计算出该段对应段表项的位置,从中读出该段在内存的起始地址。然后,再检查段内地址 d 是否超过该段的段长 SL。若超过,即 d>SL,同样发出越界中断信号。若未越界,则将该段的基址 d 与段内地址相加,即可得到要访问的内存。

分页和分段系统相似之处:两者都采用离散分配方式,且都是通过地址映射机构实现地址变换。

但在概念上两者完全不同,主要表现在下述三个方面:

分页系统以页面作为内存分配的基本单位,能有效地提高内存利用率,而分段系统以段作为内存分配的基本单位,它能够更好地满足用户多方面的需要。

段页式地址结构由段号、段内页号及页内地址三部分所组成

段页式系统的基本原理是分段和分页原理的结合,即先将用户程序分成若干个段,再把每个段分成若干个页,并为每一个段赋予一个段名。如下图展示了一个作业地址空间的结构。该作业有三个段:主程序段、子程序段和数据段;页面大小为 4 KB:

在段页式系统中,为了实现从逻辑地址到物理地址的变换,系统中需要同时配置段表和页表。段表的内容与分段系统略有不同,它不再是内存始址和段长,而是页表始址和页表长度。下图展示出了利用段表和页表进行从用户地址空间到物理(内存)空间的映射。

在段页式系统中,为了便于实现地址变换,须配置一个段表寄存器,其中存放段表始址和段长 TL。进行地址变换时,首先利用段号 S,将它与段长 TL 进行比较。若 S < TL,表示未越界,于是利用段表始址和段号来求出该段所对应的段表项在段表中的位置,从中得到该段的页表始址,并利用逻辑地址中的段内页号 P 来获得对应页的页表项位置,从中读出该贝所在的物理块号 b,再利用块号 b 和页内地址来构成物理地址。

在段页式系统中,为了获得一条指令或数据,须三次访问内存。第一次访问是访问内存中的段表,从中取得页表始址;第二次访问是访问内存中的页表,从中取出该页所在的物理块号,并将该块号与页内地址一起形成指令或数据的物理地址;第三次访问才是真正从第二次访问所得的地址中取出指令或数据。

显然,这使访问内存的次数增加了近两倍。为了提高执行速度,在地址变换机构中增设一个高速缓冲寄存器。每次访问它时,都须同时利用段号和页号去检索高速缓存,若找到匹配的表项,便可从中得到相应页的物理块号,用来与页内地址一起形成物理地址:若未找到匹配表项,则仍需第三次访问内存。

参考链接:

⑶ linux kernel 内存管理-页表、TLB

页表用来把虚拟页映射到物理页,并且存放页的保护位(即访问权限)。
在Linux4.11版本以前,Linux内核把页表分为4级:
页全局目录表(PGD)、页上层目录(PUD)、页中间目录(PMD)、直接页表(PT)
4.11版本把页表扩展到5级,在页全局目录和页上层目录之间增加了 页四级目录(P4D)
各处处理器架构可以选择使用5级,4级,3级或者2级页表,同一种处理器在页长度不同的情况可能选择不同的页表级数。可以使用配置宏CONFIG_PGTABLE_LEVELS配置页表的级数,一般使用默认值。
如果选择4级页表,那么使用PGD,PUD,PMD,PT;如果使用3级页表,那么使用PGD,PMD,PT;如果选择2级页表,那么使用PGD和PT。 如果不使用页中间目录 ,那么内核模拟页中间目录,调用函数pmd_offset 根据页上层目录表项和虚拟地址获取页中间目录表项时 直接把页上层目录表项指针强制转换成页中间目录表项

每个进程有独立的页表,进程的mm_struct实例的成员pgd指向页全局目录,前面四级页表的表项存放下一级页表的起始地址,直接页表的页表项存放页帧号(PFN)
内核也有一个页表, 0号内核线程的进程描述符init_task的成员active_mm指向内存描述符init_mm,内存描述符init_mm的成员pgd指向内核的页全局目录swapper_pg_dir

ARM64处理器把页表称为转换表,最多4级。ARM64处理器支持三种页长度:4KB,16KB,64KB。页长度和虚拟地址的宽度决定了转换表的级数,在虚拟地址的宽度为48位的条件下,页长度和转换表级数的关系如下所示:

ARM64处理器把表项称为描述符,使用64位的长描述符格式。描述符的0bit指示描述符是不是有效的:0表示无效,1表示有效。第1位指定描述符类型。
在块描述符和页描述符中,内存属性被拆分为一个高属性和一个低属性块。

处理器的MMU负责把虚拟地址转换成物理地址,为了改进虚拟地址到物理地址的转换速度,避免每次转换都需要查询内存中的页表,处理器厂商在管理单元里加了称为TLB的高速缓存,TLB直译为转换后备缓冲区,意译为页表缓存。
页表缓存用来缓存最近使用过的页表项, 有些处理器使用两级页表缓存 第一级TLB分为指令TLB和数据TLB,好处是取指令和取数据可以并行;第二级TLB是统一TLB,即指令和数据共用的TLB

不同处理器架构的TLB表项的格式不同。ARM64处理器的每条TLB表项不仅包含虚拟地址和物理地址,也包含属性:内存类型、缓存策略、访问权限、地址空间标识符(ASID)和虚拟机标识符(VMID)。 地址空间标识符区分不同进程的页表项 虚拟机标识符区分不同虚拟机的页表项

如果内核修改了可能缓存在TLB里面的页表项,那么内核必须负责使旧的TLB表项失效,内核定义了每种处理器架构必须实现的函数。

当TLB没有命中的时候,ARM64处理器的MMU自动遍历内存中的页表,把页表项复制到TLB,不需要软件把页表项写到TLB,所以ARM64架构没有提供写TLB的指令。

为了减少在进程切换时清空页表缓存的需要,ARM64处理器的页表缓存使用非全局位区分内核和进程的页表项(nG位为0表示内核的页表项), 使用地址空间标识符(ASID)区分不同进程的页表项
ARM64处理器的ASID长度是由具体实现定义的,可以选择8位或者16位。寄存器TTBR0_EL1或者TTBR1_EL1都可以用来存放当前进程的ASID,通常使用寄存器TCR_EL1的A1位决定使用哪个寄存器存放当前进程的ASID,通常使用寄存器 TTBR0_EL1 。寄存器TTBR0_EL1的位[63:48]或者[63:56]存放当前进程的ASID,位[47:1]存放当前进程的页全局目录的物理地址。
在SMP系统中,ARM64架构要求ASID在处理器的所有核是唯一的。假设ASID为8位,ASID只有256个值,其中0是保留值,可分配的ASID范围1~255,进程的数量可能超过255,两个进程的ASID可能相同,内核引入ASID版本号解决这个问题。
(1)每个进程有一个64位的软件ASID, 低8位存放硬件ASID,高56位存放ASID版本号
(2) 64位全局变量asid_generation的高56位保存全局ASID版本号
(3) 当进程被调度时,比较进程的ASID版本号和全局版本号 。如果版本号相同,那么直接使用上次分配的ASID,否则需要给进程重新分配硬件ASID。
存在空闲ASID,那么选择一个分配给进程。不存在空闲ASID时,把全局ASID版本号加1,重新从1开始分配硬件ASID,即硬件ASID从255回绕到1。因为刚分配的硬件ASID可能和某个进程的ASID相同,只是ASID版本号不同,页表缓存可能包含了这个进程的页表项,所以必须把所有处理器的页表缓存清空。
引入ASID版本号的好处是:避免每次进程切换都需要清空页表缓存,只需要在硬件ASID回环时把处理器的页表缓存清空

虚拟机里面运行的客户操作系统的虚拟地址转物理地址分两个阶段:
(1) 把虚拟地址转换成中间物理地址,由客户操作系统的内核控制 ,和非虚拟化的转换过程相同。
(2) 把中间物理地址转换成物理地址,由虚拟机监控器控制 ,虚拟机监控器为每个虚拟机维护一个转换表,分配一个虚拟机标识符,寄存器 VTTBR_EL2 存放当前虚拟机的阶段2转换表的物理地址。
每个虚拟机有独立的ASID空间 ,页表缓存使用 虚拟机标识符 区分不同虚拟机的转换表项,避免每次虚拟机切换都要清空页表缓存,在虚拟机标识符回绕时把处理器的页表缓存清空。

热点内容
影视脚本创作 发布:2025-01-23 04:00:39 浏览:844
cmd脚本执行sql脚本 发布:2025-01-23 03:46:51 浏览:115
搭建100人的游戏服务器 发布:2025-01-23 03:37:43 浏览:517
b站台解析服务器ip 发布:2025-01-23 03:36:12 浏览:203
安卓手机在哪里看港剧 发布:2025-01-23 03:35:30 浏览:52
黑漫的服务器ip 发布:2025-01-23 03:16:40 浏览:651
tplink无internet访问 发布:2025-01-23 03:15:18 浏览:567
原神用安卓手机玩为什么画质那么低 发布:2025-01-23 03:09:31 浏览:848
空调压缩机是外机吗 发布:2025-01-23 03:09:31 浏览:951
大学数据库学 发布:2025-01-23 02:54:30 浏览:589