当前位置:首页 » 操作系统 » 遗传算法的论文

遗传算法的论文

发布时间: 2023-10-16 03:30:48

⑴ 遗传算法第一次提出来是在什么文献中

《搜索、优化和机器学习中的遗传算法》。

遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

遗传算法的基本运算过程如下:

(1)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

(2)个体评价:计算群体P(t)中各个个体的适应度。

(3)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

(4)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。

(5)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

(6)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

⑵ 遗传算法的最优解 在论文中如何验证

适应度越大,解越优。

判断是否已得到近似全局最优解的方法就是遗传算法的终止条件。 在最大迭代次数范围内可以选择下列条件之一作为终止条件:

  1. 最大适应度值和平均适应度值变化不大、趋于稳定;

  2. 2. 相邻GAP代种群的距离小于可接受值,参考“蒋勇,李宏.改进NSGA—II终止判断准则[J].计算机仿真.2009. Vol.26 No.2”

⑶ C语言遗传算法在求解TSP问题 毕业论文+源代码



摘要
I
Abstract
II


1
第一章
基本遗传算法
2
1.1
遗传算法的产生及发展
3
1.2
基本原理
3
1.3
遗传算法的特点
3
1.4
基本遗传算法描述
5
1.5
遗传算法构造流程
6
第二章
遗传算法的实现技术
6
2.1
编码方法
7
2.1.1
二进制编码
7
2.1.2
格雷码编码
7
2.1.3
符点数编码
8
2.1.4
参数编码
8
2.2
适应度函数
10
2.3
选择算子
10
2.4
交叉算子
10
2.4.1
单点交叉算子
10
2.4.2
双点交叉算子
11
2.4.3
均匀交叉算子
11
2.4.4
部分映射交叉
11
2.4.5
顺序交叉
12
2.5
变异算子
12
2.6
运行参数
12
2.7
约束条件的处理方法
13
2.8
遗传算法流程图
14
第三章
遗传算法在TSP上的应用
15
3.1
TSP问题的建模与描述
15
3.2
对TSP的遗传基因编码方法
16
3.3
针对TSP的遗传操作算子
17
3.3.1
选择算子
17
3.3.1.1
轮盘赌选择
17
3.3.1.2
最优保存策略选择
17
3.3.2
交叉算子
20
3.3.2.1
单点交叉
20
3.3.2.2
部分映射交叉
21
3.3.3
变异算子
23
3.4
TSP的混和遗传算法
26
第四章
实例分析
27
4.1
测试数据
27
4.2
测试结果
27
4.3
结果分析
27


TSP
(Traveling
Salesman
Problem)旅行商问题是一类典型的NP完全问题,遗传算法是解决NP问题的一种较理想的方法。文章首先介绍了基本遗传算法的基本原理、特点及其基本实现技术;接着针对TSP
问题,论述了遗传算法在编码表示和遗传算子(包括选择算子、交叉算子变异算子这三种算子)等方面的应用情况,分别指出几种常用的编码方法的优点和缺点,并且结合TSP的运行实例详细分析了基本遗传算法的4个运行参数群体大小、遗传算法的终止进化代数、交叉概率、变异概率,对遗传算法的求解结果和求解效率的影响,经过多次的测试设定出了它们一组比较合理的取值。最后,简单说明了混合遗传算法在求解TSP问题中的应用并对遗传算法解决TSP问题的前景提出了展望。
关键词:TSP
遗传算法
遗传算子
编码
@@@需要的话按我的名字找我吧

⑷ 计算机专业论文参考文献

计算机专业论文参考文献

参考文献在各个学科、各种类型出版物都有着明确的标注法。以下是我为您整理的计算机专业论文参考文献,希望能提供帮助。

篇一:参考文献

[1] 刘韬,楼兴华.SQL Server2000 数据库系统开发实例导航. 北京:人民邮电出版社,2004.

[2] 丁宝康,董健全. 数据库实验教程. 北京:清华大学出版社, 2003:125-170.

[3] 孙强. 基于ASP.NET 的专题网站的研究与设计. 东北师范大学,2006.

[4] Michele Leroux Bustamants.Secure your ASP.NET Apps and WCF services with Windows CardSpace. MSDN Magazine,April 2007.

[5] 肖建编. ASP.NET 编程实例与技巧集粹. 北京:北京希望电子出版社,2003.

[6] 巴兹拉等. ASP.NET 安全性高级编程. 北京:清华大学出版社,2003.

[7] Jesse Libert.Programming C#中文版. 电子工业出版社,2006.

[8] 米切尔的等编着. ASP.NET 权威指南. 北京:中国电力出版社,2003.

[9] 曾登高编着..NET 系统架构与开发. 北京:电子工业出版社,2003.

[10] Jeffrey Richter. Applied Microsoft .NET Framework programming.北京:清华大学出版社, 2003.

[11] 张海藩. 软件工程导论. 北京:清华大学出版社, 2003.

篇二:参考文献

[1] 冯燕奎, 赵德奎. JSP实用案例教程[M] 清华大学出版社, 2004, 5: 70-100

[2] 王家华 软件工程[M] 东北大学出版社2001年3月303页

[3] 王宜贵 软件工程[M] 北京:机械工业出版社,2002:20-79

[4] 孙卫琴 精通struts[M]电子工业出版社 2004年8月 50-70

[5] 孙卫琴 精通hibernate[M]电子工业出版社 2005年4月 100-120

[6] 张洪斌 java2高级程序设计[M]中科多媒体出版社 2001年11月 85-90

[7] Jim Arlow UML2.0 and the Unified Process[M]机械工业出版社 2006年6月 30-40

[8] 林信良 spring2.0技术手册[M]电子工业出版社 2006年6月 50-100

[9] 熊节、林仪明、峰、陈玉泉等主编[《CSDN社区电子杂志——Java杂志》创刊号]

[10]《程序员》杂志 2007 年第4期

[11] 耿祥义编着.JSP基础编程[M].清华大学出版社,2004.55-162

[12]徐建波,周新莲.Web设计原理于编程技术[M].中南大学出版社,2005.185-193

[13] 孙鑫编着.Java Web开发详解[M].电子工业出版社,2006.189-274

[14] 林上杰,林康司编着.JSP2.0技术手册[M].电子工业出版社,2004.3-6

[15] 萨师煊,王珊.数据库系统概论(第三版)[M].北京:高等教育出版社,1998.

[16] 蔡剑,景楠.Java Web应用开发:J2EE和Tomcat[M].北京:清华大学出版社,2004.

篇三:参考文献

[1]Booch G. Object-Oriented design[J]. ACM SIGAda Ada Letters. 1982,1(3): 64-76.

[2]建模的价值IBMRational技术白皮书[R].

[3]邵维忠.杨芙清.面向对象的系统分析[M].北京:清华大学出版社.2000

[4]郑红军.张乃孝.软件开发中的形式化方法[J].计算机科学.1997,24(6): 90-96.

[5]王一川,石纯一.基于n演算的一种Agent组织模型[J].计算机研宄与发展.2003, 40(2): 163-168.

[6]阿丽亚娜5型火箭发射失败的调查报告[R].

[7]Booch G. Object-Oriented design[J]. ACM SIGAda Ada Letters. 1982,1(3): 64-76.

[8]陈鑫,李宣东.基于设计演算的形式化用例分析建模框架[J].软件学报.2008,19(10): 2539-2549

[9]夏志翔,徐中伟,陈祖希等.UML模型形式化B方法转换的实现[J].计算机应用与软件.2011,28(11): 15-20.

[10]袁晓东,郑国梁的面向对象扩充COOZ的设计[J].软件学报.1997,8(9):694-700.

[11]周翔.邵志清.顺序图与状态图的递归语义一致性研宄[J].计算机科学.2010,37(8):172-174.

[12]周翔,邵志清,薛炳蔚.基于ASM的活动图一致性规则研究[J].计算机工程与设计.2009,30(19): 4536-4539

[13]王红英.基于Petri网的软件模型验证[D].华东师范大学,2007.

[14]黄正宝,张广泉.UML2.0顺序图的XYZ/E时序逻辑语义研究[J].计算机科学.2006,33(8): 249-251.

[15]汪文元,沙基昌.谭东风.基于Petri网和UML活动图工作流建模比较[J].系统仿真学报.2006, 18(2): 504-510

[16]Kroll P,Kruchten P. The rational unified process made easy: a practitioner's guide to the RUP[M]. Addison-Wesley Professional. 2003.

[17]Seung Mo Cho,Hyung Ho Kim, Sung Deok Cha etc al. A semantics of sequence diagrams [J]. Information Processing Letters 84. 2002: 125-130

篇四:参考文献

[1]王仁宏,数值逼近(第2版),高等教育出版社,2012.

[2]姚永雷.Web服务自动协商机制研究(博士论文).北京邮电大学.2007.

[3]程昱.面向自治计算的自动服务协商研究(博士论文).浙江大学.2008.

[4]程皇.高济.基于机器学习的.自动协商决策模型.软件学报.2009,20(8):2160-2169.

[5]郭静.陈英武.1-多交互协议本体的描述.计算机工程.2008,34(12):162-166.

[6]翟社平.魏娟丽.李增智.基于概念语义协商的服务Agent划分.电子学报.2010,38(9):2030-2034.

[7]张林兰,电子市场中的双边同步自动协商研宄(博士论文),华中科技大学,2010.

[8]王斌.李艳.基于多Agent系统的自动协商机制及通用协商框架.计算机工程与科学.2009,31(1):95-98.

[10]甘早斌.朱春喜.马务等.基于遗传算法的关联议题并发谈判.软件学报.2012,23(11):2987-2999.

[11]侯薇.董红斌.印桂生.基于Bayesian学习的适应性优化协商模型.计算机研究与发展.2014,51(4):721-730.

[12]孙天昊.电子商务中一对多协商研宄(博士论文).重庆大学.2008.

[13]吴国全.基于模式的复合服务监管关键技术研宄(博士论文).中国科学技术大学.2009.

[14]程志文.赵俊.李田等.Web服务QoS数据多源采集方法及实现.计算机科学.2009,8(8):180-211.

[15]于卫红.基于JADE平台的多Agent系统开发技术.国防工业出版社.2011.

[16]甘健侯,姜跃,夏幼明,本体方法及其应用,科学出版社,2011.

篇五:参考文献

[1]徐福成.基于RSSI测距的无线传感器网络定位算法研宄[D].四川:西华大学,2014

[2]娄彦翔.移动无线传感器网络中节点复制攻击的高效分布式检测机制研究[D].上海交通大学、2012.

[3]孙琳.基于车载无线自俎网络的高速公路安全信息传输机制研究[D].天津:南开大学,2012.

[4]孙赫.物联网的发展与知识产权保护[D].北京:北京交通大学,2014.

[5]孙宏伟.田新广,李学春,等.一种改进的IDS异常检测模型[J].计算机学报,2004,26(11):1450-1455.

[6]詹杰,吴伶锡,唐志军.无线传感器网络RSSI测距方法与精度分析[J].电讯技术,2010,50(4):83-87.

[7]国务院发展研究中心产业经济研宄部,中国汽车工程学会,大众汽车集团(中国).汽车蓝皮书.中国汽车产业发展报告(2014) [M].北京:社会科学文献出版社,2014

[8]Chlamtac I, Conti M, Liu J J N. Mobile ad-hoc networking: imperatives and challenges[J]. Ad-hoc Networks,2003, 1(1): 13-64.

[9]Choi S J, Youn H Y. An efficient key pre-distribution scheme for secure distributed sensor networks[C]//Embedded and Ubiquitous Computing-EUC 2005 Workshops. Springer Berlin Heidelberg, 2005;1088-1097.[39]Naor M,Pinkas B. Efficient trace and revoke schemes[C]//Financial cryptography. Springer Berlin Heidelberg,2001:1-20.

[10]Katsaros D, Dimokas N,Tassiulas L. Social network analysis concepts in the design of wireless ad-hoc network protocoIs[J]. Network, IEEE, 2010,24(6): 23-29.

;

⑸ 最早将遗传算法应用于图像匹配的论文

遗传算法应用于图像匹配的最早论文是由美国科学家戴维·戈谈咐谈德伯格(David Goldberg)在1988年发表的论文《基于遗传算法的图像匹配》("Genetic Algorithms in Search, Optimization, and Machine Learning")中,提出了一种利用遗传算法进行图像匹配的方法。该方法主要是利用遗传算法对图像特征进行编码,并通过遗传算法的交叉、变异等操作,对不同的图像特征进行优化,从而实现图像匹配的目的。
这篇论文的发表标志着遗传算法在图像处理领域中的首次应用,为后来的相关简桐研究奠定了基础。同时,该论文也表明了遗传算法在解决复杂优化问题中的潜力和优越性,成为了现代遗传算含碰法应用领域的开山之作。

⑹ 有无跟遗传算法和图像处理相关的参考书目推荐,最好有pdf版的

以下是一些有关遗传算法和图像处理的参考书目推荐,其中一些可能有 PDF 版本可用:

  • 《遗传算法基础及应用》(Genetic Algorithm: Basic Theory and Applications)(英)戴维·戈德伯格着,唐飞等译,斗宽机械工业出版社,2003 年。这本书深入浅出地介绍了遗传算法的原理和实现,以及它们在各种应用中的使用。

  • 《遗传算法+图像处理》(Genetic Algorithm + Image Processing)(英)马克·舍纳斯着,刘扬等译,电子工业出版社,2014 年。这本书结合了遗传算法和图像处理的应用,介绍了如何使用遗传算法来解决图像处理中的问题。

  • 《基于遗传算法的图像处理优化设计研究》(王庆龙,2009)这是一本博士论文,介绍了如何使用遗传算法来进行图像处理的优化衡销戚设计。该论文详细介绍了遗传算法的咐陵原理和实现,并提供了大量实验结果和数据分析。

  • 《图像处理基础及其应用》(Digital Image Processing)(英)Gonzalez, Rafael C. and Woods, Richard E.着,唐学智等译,电子工业出版社,2010 年。这是一本经典的图像处理教材,包括图像处理的基础知识和常见技术,如滤波、变换和分割等。

  • 《图像处理的数学原理》(Mathematical Principles for Optical Imaging and Reconstruction)(英)James R. Fienup着,北京航空航天大学出版社,2014 年。这本书介绍了图像处理中的数学原理,包括线性代数、波动光学和最小二乘等。

  • 《数字图像处理(第三版)》(Digital Image Processing (3rd Edition))(英)Rafael C. Gonzalez and Richard E. Woods着,丁汉译,机械工业出版社,2008 年。这本书是一本经典的数字图像处理教材,讲述了数字图像处理的基本原理和算法。

  • 希望这些书目能对你有所帮助。

⑺ 遗传算法研究进展

遗传算法[56,53]研究的兴起是在20世纪80年代末和90年代初期,但它的历史起源可追溯到20世纪60年代初期。早期的研究大多以对自然遗传系统的计算机模拟为主。早期遗传算法的研究特点是侧重于对一些复杂的操作的研究。虽然其中像自动博弈、生物系统模拟、模式识别和函数优化等给人以深刻的印象,但总的来说这是一个无明确目标的发展时期,缺乏带有指导性的理论和计算工具的开拓。这种现象直到20世纪70年代中期由于Holland和De Jong的创造性研究成果的发表才得到改观。当然,早期的研究成果对于遗传算法的发展仍然有一定的影响,尤其是其中一些有代表性的技术和方法已为当前的遗传算法所吸收和发展。

在遗传算法作为搜索方法用于人工智能系统中之前,已有不少生物学家用计算机来模拟自然遗传系统。尤其是Fraser的模拟研究,他于1962年提出了和现在的遗传算法十分相似的概念和思想。但是,Fraser和其他一些学者并未认识到自然遗传算法可以转化为人工遗传算法。Holland教授及其学生不久就认识到这一转化的重要性,Holland认为比起寻找这种或那种具体的求解问题的方法来说,开拓一种能模拟自然选择遗传机制的带有一般性的理论和方法更有意义。在这一时期,Holland不但发现了基于适应度的人工遗传选择的基本作用,而且还对群体操作等进行了认真的研究。1965年,他首次提出了人工遗传操作的重要性,并把这些应用于自然系统和人工系统中。

1967年,Bagley在他的论文中首次提出了遗传算法(genetic algorithm)这一术语,并讨论了遗传算法在自动博弈中的应用。他所提出的包括选择、交叉和变异的操作已与目前遗传算法中的相应操作十分接近。尤其是他对选择操作做了十分有意义的研究。他认识到,在遗传进化过程的前期和后期,选择概率应合适地变动。为此,他引入了适应度定标(scaling)概念,这是目前遗传算法中常用的技术。同时,他也首次提出了遗传算法自我调整概念,即把交叉和变异的概率融于染色体本身的编码中,从而可实现算法自我调整优化。尽管Bagley没有对此进行计算机模拟实验,但这些思想对于后来遗传算法的发展所起的作用是十分明显的。

在同一时期,Rosenberg也对遗传算法进行了研究,他的研究依然是以模拟生物进化为主,但他在遗传操作方面提出了不少独特的设想。1970年Cavicchio把遗传算法应用于模式识别中。实际上他并未直接涉及到模式识别,而仅用遗传算法设计一组用于识别的检测器。Cavicchio对于遗传操作以及遗传算法的自我调整也做了不少有特色的研究。

Weinberg于1971年发表了题为《活细胞的计算机模拟》的论文。由于他和Rosenberg一样注意于生物遗传的模拟,所以他对遗传算法的贡献有时被忽略。实际上,他提出的多层次或多级遗传算法至今仍给人以深刻的印象。

第一个把遗传算法用于函数优化的是Hollstien。1971年他在论文《计算机控制系统中的人工遗传自适应方法》中阐述了遗传算法用于数字反馈控制的方法。实际上,他主要是讨论了对于二变量函数的优化问题。其中,对于优势基因控制、交叉和变异以及各种编码技术进行了深入的研究。

1975年在遗传算法研究的历史上是十分重要的一年。这一年,Holland出版了他的着名专着《自然系统和人工系统的适配》。该书系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极为重要的模式理论(schemata theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。直到这时才知道遗传操作到底在干什么,为什么又干得那么出色,这对于以后陆续开发出来的遗传操作具有不可估量的指导作用。

同年,De Jong完成了他的重要论文《遗传自适应系统的行为分析》。他在该论文中所做的研究工作可看作是遗传算法发展进程中的一个里程碑,这是因为他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论迄今仍具有普遍的指导意义。

进入20世纪80年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显着提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。

随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习(Genetic Base Machine Learning),这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其他智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用。五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,既同遗传算法具有相同之处,也有各自的特点。

随着遗传算法研究和应用的不断深入和发展,一系列以遗传算法为主题的国际会议十分活跃。从1985年开始,国际遗传算法会议,即ICGA(International Conference on Genetic Algorithm)每两年举行一次。在欧洲,从1990年开始也每隔一年举办一次类似的会议,即 PPSN(Parallel Problem Solving from Nature)会议。除了遗传算法外,大部分有关ES和EP的学术论文也出现在PPSN中。另外,以遗传算法的理论基础为中心的学术会议有FOGA(Foundation of Genetic Algorithm)。它也是从1990年开始,隔年召开一次。这些国际学术会议论文集中反映了遗传算法近些年来的最新发展和动向。

热点内容
搭建100人的游戏服务器 发布:2025-01-23 03:37:43 浏览:516
b站台解析服务器ip 发布:2025-01-23 03:36:12 浏览:202
安卓手机在哪里看港剧 发布:2025-01-23 03:35:30 浏览:51
黑漫的服务器ip 发布:2025-01-23 03:16:40 浏览:650
tplink无internet访问 发布:2025-01-23 03:15:18 浏览:566
原神用安卓手机玩为什么画质那么低 发布:2025-01-23 03:09:31 浏览:847
空调压缩机是外机吗 发布:2025-01-23 03:09:31 浏览:950
大学数据库学 发布:2025-01-23 02:54:30 浏览:588
部队营区监控系统录像存储多少天 发布:2025-01-23 02:49:26 浏览:523
oraclelinux用户名和密码 发布:2025-01-23 02:43:06 浏览:404