遗传算法约束条件
㈠ 你好,我想问下怎么根据我设计的目标函数和约束条件在matlab中编写遗传算法的程序
给你一个例子,说明如何用ge()函数求解带有约束条件的目标函数问题。
1、首先建立带有约束条件的目标函数
function f =ga_fun0(x)
if (1.5+x(1)*x(2)-x(1)-x(2)>0 | -x(1)*x(2)>10)
f=100;
else
f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
end
end
2、在命令窗口中执行下列命令
>>[x,fval] = ga(@ga_fun0,2)
运行结果
如还有问题,请将问题贴出来,帮你解决。
㈡ 遗传算法中中约束条件怎么处理呢
只要你的遗传算子选对,进化过程中上下限约束就能满足;
若是其它连续性变量的线性或非线性约束,可采用罚函数法将这些约束加入目标函数(适应度函数)中,这样就能保证最优解在约束范围内。
若是存在0-1的变量(主要是在规划中,某个东西建或不建),则进化过程就会产生较多不可行解,采用直接丢弃的方法固然可以,但是当不可行解多时,这种方法就使遗传算法失去它的优势;所以就有学者提出了不可行解的修复策略,将不可行解通过某种方法转换为可行解。那么不同的优化问题解的修复策略都可能会不同,如果你设计了一个针对你所做问题的修复策略,那也就成了你的创新点之一了。
当然也有设计进化策略的研究,但这方面比较修复策略而言有难度。
㈢ 目标方程和约束条件有微分方程,应该怎么用遗传算法拟合
用遗传算法ga函数是可以拟合带有目标方程和约束条件且含有微分方程的系数,其拟合原则是误差最小估计原则。
解决问题的方法:1、建立自定义目标函数;2、建立自定义约束函数;3、建立自定义微分方程函数;4、误差最小控制函数;5、利用遗传算法ga函数求解拟合系数,利用ode45函数求解微分方程;6、建立嵌套函数计算
㈣ 遗传算法中的约束条件怎么处理
在fitness function里面加上,if Y > 0.04,让output = inf。不知道你用什么语言写的,用matlab的话上面这条语句应该可以用。让Y>0.04的情况下,fitness function输出无穷大,就可以直接让这些子代直接被淘汰。
㈤ 使用matlab遗传算法工具箱如何加入目标函数中变量的约束条件啊,可否在M文件中加
首先回答你第一个问题:怎么加入变量的约束条件?
打开遗传算法工具箱的窗体中会有下图所示的选项,即是约束条件的编辑
至于添加的方式,这里要重点的提一下,首先将问题抽象成规划问题的标准形式(如果你不懂什么是标准形式的话,建议你去翻阅运筹学那本书,上告诉你什么是标准形式),然后用矩阵语言写出来,最后将矩阵的系数填写到线性不等约束和线性相等约束中,同时定义所求变量x的上界和下界(记住有多少个变量就有多少列,如果你发现有些条件中没有出现某些变量,那么就应该用0补足,这个是matlab解决规划问题与lingo想比较麻烦的一个地方,)。
然后回答你第二个问题:可否在M文件中添加约束条件?
当然可以,界面的东西是为了方便不熟悉matlab编程的人而设计出来的,但是其底层的算法和接口肯定是有的。
碰到不懂的函数,请记得:help函数名
helpga之后会得到一下一些函数
ga
//这个是定义
Syntax //这个是语法也即是调用的规则
x=ga(fitnessfcn,nvars)
x=ga(fitnessfcn,nvars,A,b)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
x=ga(problem)
[x,fval]=ga(...)
[x,fval,exitflag]=ga(...)直接给你将最长的那个吧
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
X是返回所求的解
fitnessfcn是适应度函数
nvars是适应度函数中所含变量的维数
A是不等式约束中变量的系数矩阵,b是不等式约束中不含变量的值矩阵
Aeq是等式约束中变量的系数矩阵,beq是等式约束中不含变量的值矩阵
LB是下界,UB是上界
nonlcon是非线性约束条件
至于options嘛 我也木有用过,其实你也可以不用管的。
懂了木有呢,亲?
㈥ 如何在遗传算法中设置变量约束条件
1、一般有两种方法,一种是在生成初始种群时只生成满足约束的个体;另一种是随机产生个体,并且在随后的操作中判断个体是否满足约束条件。
2、这是遗传算法的特点决定的;遗传算法是一种随机搜索算法,每次都因种群规模的不同、参数的不同而得到不同的结果。即便参数都相同,每次运算得到的近似最优解也不一定相同。一般取n次运算中的最好结果来作为最终的最优解。当然,如果你的约束条件设置不妥,或者参数设置不适当,那么也会造成每次运算的近似最优解相差过大,且质量不高。这些都要注意。
3、我用MATLAB自己编写遗传算法来解决问题,因为其自带的工具箱比较固定,只能解决简单、典型的问题。但你的问题稍加复杂时,工具箱的作用就发挥不出来。