字典学习算法
❶ 稀疏表示的性质
信号稀疏表示的目的就是在给定的超完备字典中用尽可能少的原子来表示信号,可以获得信号更为简洁的表示方式,从而使我们更容易地获取信号中所蕴含的信息,更方便进一步对信号进行加工处理,如压缩、编码等。信号稀疏表示方向的研究热点主要集中在稀疏分解算法、超完备原子字典、和稀疏表示的应用等方面。
在稀疏表示理论未提出前,正交字典和双正交字典因为其数学模型简单而被广泛的应用,然而他们有一个明显的缺点就是自适应能力差,不能灵活全面地表示信号,1993年,Mallat基于小波分析提出了信号可以用一个超完备字典进行表示,从而开启了稀疏表示的先河,经研究发现,信号经稀疏表示后,越稀疏则信号重建后的精度就越高,而且稀疏表示可以根据信号的自身特点自适应的选择合适的超完备字典。对信号稀疏表示的目的就是寻找一个自适应字典使得信号的表达最稀疏。
稀疏分解算法首先是由Mallat提出的,也就是众所周知的匹配追踪算法(Matching Pursuit,MP)算法,该算法是一个迭代算法,简单且易于实现,因此得到了广泛的应用。随后,Pati等人基于MP算法,提出了正交匹配追踪算法(Orthogonal Matching Pursuit,OMP),OMP算法相较于MP算法,收敛速度更快。在以后的研究中,为了改进OMP算法,学者也提出了各种不同的其它算法,例如:压缩采样匹配追踪(Conpressive Sampling Matching Pursuit,CoSaMP)算法、正则化正交匹配追踪(Regularized Orthogonal Matching Pursuit,ROMP)算法、分段式正交匹配追踪(Stagewise OMP,StOMP)算法、子空间追踪(Subspace Pursuit,SP)算法等等。
信号稀疏表示的两大主要任务就是字典的生成和信号的稀疏分解,对于字典的选择,一般有分析字典和学习字典两大类。常用的分析字典有小波字典、超完备DCT字典和曲波字典等,用分析字典进行信号的稀疏表示时,虽然简单易实现,但信号的表达形式单一且不具备自适应性;反之,学习字典的自适应能力强,能够更好的适应不同的图像数据,在目前的研究中,常用的学习字典的方法包括:Engan于1999年提出的最优方向(Method Of Optimal Directions,MOD)算法,该算法是学习字典的鼻祖,它的字典更新方式简单,但与此同时,它的收敛速度很慢,在该算法的基础上,一些研究人员同时还提出了一些其它的字典学习算法,如FOCUSS字典学习算法,广义PCA(Generalized PCA)算法等等,Micheal Elad也于2006年提出了基于超完备字典稀疏分解的K-SVD算法,该算法相较于MOD算法,收敛速度有了很大的提高,但是随着噪声的逐渐加大,使用该算法进行去噪后的图像因纹理细节的丢失会产生模糊的效果。Mairal于2010年提出了一种online字典学习算法,该算法速度较快且适用于一些特殊的信号处理,例如视频信号,语音信号等等 。
❷ 求一个c语言按字典序全排列的方法
如果是想学习一下算法,用c语言不错。如果是实际使用需要,就用现成的木头超级字典生成器(MutouDic),工具集里有一个排列字典工具,可以生成任意个元素,任意长度的升序排列、降序排列和全排列。
❸ 怎么用最短时间高效而踏实的学习python
买本快速入门的书,学习下基础语法
语言和语言之前有差异,找找面试题之类的,可以快速知道这门语言的坑在哪里
系统的看一下python官方手册
找个项目练练手,同时也能学习下pyhon的框架
❹ Python 从入门到精通推荐看哪些书籍呢
你好呀,题主!Python从入门到精通的书籍推荐有下面这几本书哦~
希望可以帮助到你!
❺ 图解:数据结构与算法之字典树
字典树(Trie树)这一数据结构是不太常见但是十分好用<typo id="typo-32" data-origin="而" ignoretag="true">而</typo>一种数据结构,博主也就是最近一段时间做了几道字节的题目才了解到字典树这一数据结构。并将自己的学习内容跟大家分享。
首先,何为字典树(Trie树)?顾名思义,就是在查询目标时,像字典一样按照一定排列顺序标准和步骤访问树的节点,举一个简单例子,英文字典查单词"He",那么第一步你肯定要按照a-z的顺序先找到h这个首字母,然后再按照相同顺序找到e。博主所要介绍的字典树就是类似字典这样的结构。
上述查找单词的过程就是不断查找与所查单词相同前缀的字符串,直至查找到所查单词的最后一个字母。因此,字典树又称为前缀树(prefix Tree)。
以hell、hi、new、nop为例建立一个字典树,构造如下
根据上文所述可以得到字典树的结构性质
根据以上三点来构造字典树。
字典树的构造其实较为简单,和一般树的构造没有太大区别。接下来将对字典树的插入、删除、查询操作进行分析与讲解。
在没有字典树的时候,我们需要先构建出字典树。
以插入hell为例:
再插入单词hit,过程如下,检查=>存在则访问/不存在则建立新节点再访问=>直到要插入的单词到达最后一个字符。
字典树的插入操作比较简单,不需要考虑太多排序问题。
正如上文所说,按照一定的标准进行查询目标字符串,每个节点都储存一个字符,根节点到达子节点路径组成的字符串即为该节点所对应的字符串,那么查询目标字符串时按照从根节点一步一步访问相应字符所在的节点,其实也就是匹配字符串前缀的过程。
如下图,在字典树中,查询"hell",
[图片上传失败...(image-f028c4-1611057619223)]
如果在该字典中查询no
删除操作相对于插入与查询复杂一点,但是也很简单,删除的前提是单词已经存在于字典树。
删除字典树节点的操作需要考虑目标字符串最后一个字符是否是树中的叶子节点。
因为一个单词可能是另一个单词的前缀部分,如果不是叶子节点,我们只需要把该单词的单词标志位清空即可,无需删除整个“树枝”。
比如,想要删除"no"这个单词
比如,想要删除"hell"这个单词,与第一种删除相同,只不过是从最后一个节点,'l'节点是叶子节点,开始往上进行节点删除操作。
比如,想要删除"hi",那么与前两种其实一致,访问到叶子节点'i',删除叶子节点,并向上访问,访问到'h',由于删除'i'以后,'h'依然不是叶子节点,因此不再继续删除节点。
比如,想要删除"nop",与前几种类似,先访问到叶子节点'p'删除,然后上移发现'o'是叶子节点,然而'o'有单词标记位,所以,这里不再继续删除。
有上面几种删除操作,我们得到了删除的标准:
了解了这么多字典树的各种操作,相信你对字典树的用途有个大概了解了,字典树最大作用是用于==字符串的各种匹配==,前缀匹配(模糊搜索),字符串查找(字典)等等。
博主只打出了“涓涓清泉”四个关键字,其搜索列表返回了诸多以涓涓清泉为首的选项
顾名思义,就是一个单纯的字典而已,不多举例。
字典树的构建,通过利用空间换时间的思想以及字符串的公共前缀减少无效的字符串比较操作从而使得插入和查找字符串变得高效.其插入或者查找的时间复杂度为O(n),n为字符串长度。
当然,字典树有着它的弊端,当所插入的单词没有很多公共前缀时,字典树的构建变得十分复杂和低效。
字典树的难度不是很大,但却是一种十分有用的数据结构,掌握之后,对于解决一些有关字符串匹配、公共前缀的问题十分有帮助。
当然我们也说了,字典树有着自己的弊端,由于用空间换时间,如果遇到了一堆公共前缀很少的单词进行字典树构造时,空间需求就显得十分大了。