矩阵的幂运算法则
Ⅰ 矩阵的幂运算法则是什么
把矩阵对角化后,n次方的矩阵就是里面每个元素的n次方
设一线性变换a,在基m下的矩阵为A,在基n下的矩阵为B,m到n的过渡矩阵为X,
那么可以证明:B=X⁻¹AX
那么定义:A,B是2个矩阵。如果存在可逆矩阵X,满足B=X⁻¹AX ,那么说A与B是相似的(是一种等价关系)。
如果存在可逆矩阵X使A与一个对角矩阵B相似,那么说A可对角化。
相应的,如果线性变换a在基m下的矩阵为A,并且A相似于对角矩阵B,那么令X为过渡矩阵即可求出基n,并且在n下线性变换a的矩阵为对角矩阵,从而达到了化简。
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
求相似对角化的矩阵Q的具体步骤为:
求|λE-A|=0 (其中E为单位阵)的解,得λ1和λ2(不管是否重根),这就是Λ矩阵的对角元素。
依次把λ1和λ2带入方程(如果λ是重根只需代一次,就可求得两个基础解)[λE-A][x]=[0],求得两个解向量[x1]、[x2],从而矩阵Q的形式就是[x1 x2]。
接下来的求逆运算是一种基础运算,这里不再赘述。
Ⅱ 矩阵的幂怎么算
有下面三种情况:
1、如果你所要求的是一般矩阵的高次幂的话,是没有捷径可走的,只能够一个个去乘出来。
至于低次幂,如果能够相似对角化,即:存在简便算法的话,在二阶矩阵的情况下简便算法未必有直接乘来得快,所以推荐直接乘。
2、如果你要求的是能够相似对角化的矩阵的高次幂的话,是存在简便算法的。
设要求矩阵A的n次幂,且A=Q^(-1)*Λ*Q,其中Q为可逆阵,Λ为对角阵。
即:A可以相似对角化。那么此时,有求幂公式:A^n=Q^(-1)*(Λ)^n*Q,而对角阵求n次方,只需要每个对角元素变为n次方即可,这样就可以快速求出二阶矩阵A的的高次幂。
3、如果矩阵可以相似对角化,求相似对角化的矩阵Q的具体步骤为:
求|λE-A|=0 (其中E为单位阵)的解,得λ1和λ2(不管是否重根),这就是Λ矩阵的对角元素。
依次把λ1和λ2带入方程(如果λ是重根只需代一次,就可求得两个基础解)[λE-A][x]=[0],求得两个解向量[x1]、[x2],从而矩阵Q的形式就是[x1 x2]。
接下来的求逆运算是一种基础运算,这里不再赘述。
下面可以举一个例子:
二阶方阵:
1 a
0 1
求它的n次方矩阵
方阵A的k次幂定义为 k 个A连乘: A^k = AA...A (k个)
一些常用的性质有:
1. (A^m)^n = A^mn
2. A^mA^n = A^(m+n)
一般计算的方法有:
1. 计算A^2,A^3 找规律, 然后用归纳法证明
2. 若r(A)=1, 则A=αβ^T, A^n=(β^Tα)^(n-1)A
注: β^Tα =α^Tβ = tr(αβ^T)
3. 分拆法: A=B+C, BC=CB, 用二项式公式展开
适用于 B^n 易计算, C的低次幂为零矩阵: C^2 或 C^3 = 0.
4. 用对角化 A=P^-1diagP
A^n = P^-1diag^nP
(2)矩阵的幂运算法则扩展阅读:
幂等矩阵的主要性质:
1.幂等矩阵的特征值只可能是0,1;
2.幂等矩阵可对角化;
3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);
4.可逆的幂等矩阵为E;
5.方阵零矩阵和单位矩阵都是幂等矩阵;
6.幂等矩阵A满足:A(E-A)=(E-A)A=0;
7.幂等矩阵A:Ax=x的充要条件是x∈R(A);
8.A的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。考虑幂等矩阵运算后仍为幂等矩阵的要求,可以给出幂等矩阵的运算:
1)设 A1,A2都是幂等矩阵,则(A1+A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1=0,且有:R(A1+A2) =R (A1) ⊕R (A2);N(A1+A2) =N(A1)∩N(A2);
2)设 A1, A2都是幂等矩阵,则(A1-A2) 为幂等矩阵的充分必要条件为:A1·A2=A2·A1=A2,且有:R(A1-A2) =R(A1)∩N (A2);N (A1- A2) =N (A1)⊕R (A2);
3)设 A1,A2都是幂等矩阵,若A1·A2=A2·A1,则A1·A2为幂等矩阵,且有:R (A1·A2) =R(A1) ∩R (A2);N (A1·A2) =N (A1) +N (A2)。