fft算法流程
1. FFT的公式是什么和算法是怎样实现
二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩阵的第i行。注意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。
所以,关键是一维FFT算法的实现。下面讨论一维FFT的算法原理。
【1D-FFT的算法实现】
设序列h(n)长度为N,将其按下标的奇偶性分成两组,即he和ho序列,它们的长度都是N/2。这样,可以将h(n)的FFT计算公式改写如下 :
(A)
由于
所以,(A)式可以改写成下面的形式:
按照FFT的定义,上面的式子实际上是:
其中,k的取值范围是 0~N-1。
我们注意到He(k)和Ho(k)是N/2点的DFT,其周期是N/2。因此,H(k)DFT的前N/2点和后N/2点都可以用He(k)和Ho(k)来表示
2. 16点DFT的FFT算法
FFT(快速傅里叶变换)是DFT的一种特殊情况,就是当运算点的个数是2的整数次幂的时候进行的运算(不够用0补齐)。
FFT计算原理及流程图:
原理:FFT的计算要求点数必须为2的整数次幂,如果点数不够用0补齐。例如计算{2,3,5,8,4}的16点FFT,需要补11个0后进行计算。FFT计算运用蝶形运算,在蝶形运算中变化规律由W(N, p)推导,其中N为FFT计算点数,J为下角标的值。
L = 1时,W(N, p) = W(N, J) = W(2^L, J),其中J = 0;
L = 2时,W(N, p) = W(N, J) = W(2^L, J),其中J = 0, 1;
L = 3时,W(N, p) = W(N, J) = W(2^L, J),其中J = 0, 1, 2, 3;
所以,W(N, p) = W(2^L, J),其中J = 0, 1, ..., 2^(L-1)-1
又因为2^L = 2^M*2^(L-M) = N*2^(L-M),这里N为2的整数次幂,即N=2^M,
W(N, p) = W(2^L, J) = W(N*2^(L-M), J) = W(N, J*2^(M-L))
所以,p = J*2^(M-L),此处J = 0, 1, ..., 2^(L-1)-1,当J遍历结束但计算点数不够N时,J=J+2^L,后继续遍历,直到计算点数为N时不再循环。
流程图:
/*======================================================================
*方法名:fft
*方法功能:计算数组的FFT,运用蝶形运算
*
*变量名称:
*yVector-原始数据
*length-原始数据长度
*N-FFT计算点数
*fftYreal-FFT后的实部
*fftYImg-FFT后的虚部
*
*返回值:是否成功的标志,若成功返回true,否则返回false
*=====================================================================*/
+(BOOL)fft:(floatfloat*)yVectorandOriginalLength:(NSInteger)lengthandFFTCount:(NSInteger)NandFFTReal:(floatfloat*)fftYRealandFFTYImg:(floatfloat*)fftYImg
{
//确保计算时时2的整数幂点数计算
NSIntegerN1=[selfnextNumOfPow2:N];
//定义FFT运算是否成功的标志
BOOLisFFTOK=false;
//判断计算点数是否为2的整数次幂
if(N!=N1)
{
//不是2的整数次幂,直接计算DFT
isFFTOK=[selfdft:yVectorandOriginalLength:lengthandFFTCount:NandFFTReal:fftYRealandFFTYImg:fftYImg];
轿誉
闭肢段//返回成功标志
returnisFFTOK;
}
//如果计算点数位2的整数次幂,用FFT计算,如下
//定义变量
floatyVectorN[N1];//N点运算的原始数据
NSIntegerpowOfN=log2(N1);//N=2^powOfN,用于标记最大运算级数(公式中表示为:M)
NSIntegerlevel=1;//运算级数(第几次运算),最大为powOfN,初值为第一级饥模运算(公式中表示为:L)
NSIntegerlineNum;//行号,倒序排列后的蝶形运算行号(公式中表示为:k)
floatinverseOrderY[N1];//yVector倒序x
NSIntegerdistanceLine=1;//行间距,第level级运算每个蝶形的两个节点距离为distanceLine=2^(L-1)(公式中表示为:B)
NSIntegerp;//旋转因子的阶数,旋转因子表示为W(N,p),p=J*2^(M-L)
NSIntegerJ;//旋转因子的阶数,旋转因子表示为W(2^L,J),J=0,1,2,...,2^(L-1)-1=distanceLine-1
floatrealTemp,imgTemp,twiddleReal,twiddleImg,twiddleTheta,twiddleTemp=PI_x_2/N1;
NSIntegerN_4=N1/4;
//判断点数是否够FFT运算点数
if(length<=N1)
{
//如果N至少为length,先把yVector全部赋值
for(NSIntegeri=0;i<length;i++)
{
yVectorN[i]=yVector[i];
}
if(length<N1)
{
//如果N>length后面补零
for(NSIntegeri=length;i<N1;i++)
{
yVectorN[i]=0.0;
}
}
}
else
{
//如果N<length截取相应长度的数据进行运算
for(NSIntegeri=0;i<N1;i++)
{
yVectorN[i]=yVector[i];
}
}
//调用倒序方法
[selfinverseOrder:yVectorNandN:N1andInverseOrderVector:inverseOrderY];
//初始值
for(NSIntegeri=0;i<N1;i++)
{
fftYReal[i]=inverseOrderY[i];
fftYImg[i]=0.0;
}
//三层循环
//第三层(最里):完成相同旋转因子的蝶形运算
//第二层(中间):完成旋转因子的变化,步进为2^level
//第一层(最外):完成M次迭代过程,即计算出x(k)=A0(k),A1(k),...,Am(k)=X(k)
//第一层循环
while(level<=powOfN)
{
distanceLine=powf(2,level-1);//初始条件distanceLine=2^(level-1)
J=0;
NSIntegerpow2_Level=distanceLine*2;//2^level
NSIntegerpow2_NSubL=N1/pow2_Level;//2^(M-L)
//第二层循环
while(J<distanceLine)
{
p=J*pow2_NSubL;
lineNum=J;
NSIntegerstepCount=0;//J运算的步进计数
//求旋转因子
if(p==0)
{
twiddleReal=1.0;
twiddleImg=0.0;
}
elseif(p==N_4)
{
twiddleReal=0.0;
twiddleImg=-1.0;
}
else
{
//计算尤拉公式中的θ
twiddleTheta=twiddleTemp*p;
//计算复数的实部与虚部
twiddleReal=cos(twiddleTheta);
twiddleImg=-11*sin(twiddleTheta);
}
//第三层循环
while(lineNum<N1)
{
//计算下角标
NSIntegerfootNum=lineNum+distanceLine;
/*---------------------------------------
*用复数运算计算每级中各行的蝶形运算结果
*X(k)=X(k)+X(k+B)*W(N,p)
*X(k+B)=X(k)-X(k+B)*W(N,p)
*---------------------------------------*/
realTemp=fftYReal[footNum]*twiddleReal-fftYImg[footNum]*twiddleImg;
imgTemp=fftYReal[footNum]*twiddleImg+fftYImg[footNum]*twiddleReal;
//将计算后的实部和虚部分别存放在返回数组中
fftYReal[footNum]=fftYReal[lineNum]-realTemp;
fftYImg[footNum]=fftYImg[lineNum]-imgTemp;
fftYReal[lineNum]=fftYReal[lineNum]+realTemp;
fftYImg[lineNum]=fftYImg[lineNum]+imgTemp;
stepCount+=pow2_Level;
//行号改变
lineNum=J+stepCount;
}
//旋转因子的阶数变换,达到旋转因子改变的效果
J++;
}
//运算级数加一
level++;
}
isFFTOK=true;
returnisFFTOK;
}
3. 实序列的FFT算法
在以上讨论FFT算法中,均假定序列x(l)为复的,但实际问题中的序列大多为实的。当然,我们可以把实序列处理成虚部为零的复序列。因此,就要引进许多零参加运算。这样一来,在机器运算时间和存储单元方面都将造成很大的浪费。在本段中,我们介绍对实序列x(l)应用FFT算法的一个有效方法。
1.同时计算两个实序列的FFT算法
设有N=4的两个实序列x1(l)与x2(l)。为了求得它们的谱X1(m)与X2(m),我们用此二实序列构造成如下复序列
物探数字信号分析与处理技术
利用上一段的方法,可以求得复序列x(l)的谱X(m)。根据(7-3-1)得到
物探数字信号分析与处理技术
上式中的m用N-m代替,则得
物探数字信号分析与处理技术
将上式两端取共轭,根据对称性有
物探数字信号分析与处理技术
根据DFT的复共轭性质,对于实序列x1(l)与x2(l),有
物探数字信号分析与处理技术
于是从(7-3-4)得到
物探数字信号分析与处理技术
联立求解(7-3-2)和(7-3-6)便得到
物探数字信号分析与处理技术
例如设有两个N=4点的实序列,
物探数字信号分析与处理技术
我们用它们构造一个N=4点的复序列
物探数字信号分析与处理技术
利用FFT算法求X(m),m=0,1,2,3(图7-3-1),
图7-3-1 N=4点的FFT算法流程图
于是得到
物探数字信号分析与处理技术
因此从式(7-3-7)得到
物探数字信号分析与处理技术
物探数字信号分析与处理技术
2.实序列的FFT算法
设有N点的实序列x(l),l=0,1,2,…,N-1。按照点的奇偶编号,将它们分成N/2个点的两个子序列
物探数字信号分析与处理技术
设x1(l)的谱与x2(l)的谱分别为X1(m)与X2(m)
物探数字信号分析与处理技术
其中
于是可以将实序列x(l)的谱X(m),用两个子序列x1(l),x2(l)的谱X1(m),X2(m)来表示
物探数字信号分析与处理技术
其中
物探数字信号分析与处理技术
注意,x1(l),x2(l)与X1(m),X2(m)均以N/2为周期,
利用x1(l)、x2(l)构成如下复序列
物探数字信号分析与处理技术
利用FFT算法可以求得复序列 的谱 。根据(7-3-7)就求得两个实子序列的谱X1(m)与X2(m)
物探数字信号分析与处理技术
有了X1(m),X2(m),根据(7-3-10)就可求得X(m)。以上就是用FFT算法求实序列x(l)的谱X(m)的方法。必须指出,用公式(7-3-10)求X(m)时,第一,两个实子序列的谱X1(m),X2(m)及复序列x珓(l)的谱珘X(m)均是以N/2为周期的周期序列;第二,由于x
(l)是实序列,根据DFT的复共轭性质有X(m)=X*(N-m),m=0,1,…,N/2,故只需求得前(N/2)+1个点的X(m),就得到全部N个点的X(m)了
例如,有N=8点的实序列,
物探数字信号分析与处理技术
首先,按点的奇偶编号分成两个实子序列,
物探数字信号分析与处理技术
其次用它们构造如下复序列,
物探数字信号分析与处理技术
用FFT算法求此复序列的谱 (图7-3-2)
图7-3-2 N=4点的FFT算法流程图
于是得到:
根据周期性,有
物探数字信号分析与处理技术
根据(7-3-12)式,
物探数字信号分析与处理技术
根据周期性,有
物探数字信号分析与处理技术
故最终由(7-3-10)得到
物探数字信号分析与处理技术
4. FFT原理的FFT基本原理
FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform)。FFT算法可分为按时间抽取算法和按频率抽取算法,先简要介绍FFT的基本原理。从DFT运算开始,说明FFT的基本原理。
DFT的运算为:
式中
由这种方法计算DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中
的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。
FFT基本上可分为两类,时间抽取法和频率抽取法,而一般的时间抽取法和频率抽取法只能处理长度N=2^M的情况,另外还有组合数基四FFT来处理一般长度的FFT 设N点序列x(n),,将x(n)按奇偶分组,公式如下图
改写为:
一个N点DFT分解为两个 N/2点的DFT,继续分解,迭代下去,其运算量约为
其算法有如下规律
两个4点组成的8点DFT
四个2点组成的8点DFT
按时间抽取的8点DFT
原位计算
当数据输入到存储器中以后,每一级运算的结果仍然储存在同一组存储器中,直到最后输出,中间无需其它存储器
序数重排
对按时间抽取FFT的原位运算结构,当运算完毕时,这种结构存储单元A(1)、A(2),…,A(8)中正好顺序存放着X(0),X(1),X(2),…,X(7),因此可直接按顺序输出,但这种原位运算的输入x(n)却不能按这种自然顺序存入存储单元中,而是按X(0),X(4),X(2),X(6),…,X(7)的顺序存入存储单元,这种顺序看起来相当杂乱,然而它也是有规律的。当用二进制表示这个顺序时,它正好是“码位倒置”的顺序。
蝶形类型随迭代次数成倍增加
每次迭代的蝶形类型比上一次蝶代增加一倍,数据点间隔也增大一倍 频率抽取2FFT算法是按频率进行抽取的算法。
设N=2^M,将x(n)按前后两部分进行分解,
按K的奇偶分为两组,即
得到两个N/2 点的DFT运算。如此分解,并迭代,总的计算量和时间抽取(DIT)基2FFT算法相同。
算法规律如下:
蝶形结构和时间抽取不一样但是蝶形个数一样,同样具有原位计算规律,其迭代次数成倍减小 时,可采取补零使其成为
,或者先分解为两个p,q的序列,其中p*q=N,然后进行计算。 前面介绍,采用FFT算法可以很快算出全部N点DFT值,即z变换X(z)在z平面单位圆上的全部等间隔取样值。实际中也许①不需要计算整个单位圆上z变换的取样,如对于窄带信号,只需要对信号所在的一段频带进行分析,这时希望频谱的采样集中在这一频带内,以获得较高的分辨率,而频带以外的部分可不考虑,②或者对其它围线上的z变换取样感兴趣,例如语音信号处理中,需要知道z变换的极点所在频率,如极点位置离单位圆较远,则其单位圆上的频谱就很平滑,这时很难从中识别出极点所在的频率,如果采样不是沿单位圆而是沿一条接近这些极点的弧线进行,则在极点所在频率上的频谱将出现明显的尖峰,由此可较准确地测定极点频率。③或者要求能有效地计算当N是素数时序列的DFT,因此提高DFT计算的灵活性非常有意义。
螺旋线采样是一种适合于这种需要的变换,且可以采用FFT来快速计算,这种变换也称作Chirp-z变换。
5. 设x(n)={1,0.5,0,0.5,1,1,0.5,0),用FFT算法求x(n)的DFT。FFT算法任选,画出FFT的流程图。
二维FFT相当于对行和列分别进行一维FFT运算。
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:for (int i=0; i<M; i++)FFT_1D(ROW[i],N);for (int j=0; j<N; j++)FFT_1D(COL[j],M);其中,ROW[i]表示矩阵的第i行。
例:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define N 1000
/*定义复数类型*/
typedef struct{
double real;
double img;
}complex;
complex x[N], *W; /*输入序列,变换核*/
int size_x=0;/*输入序列的大小,在本程序中仅限2的次幂*/
double PI;/*圆周率*/
void fft();/*快速傅里叶变换*/
void initW(); /*初始化变换核*/
void change(); /*变址*/
void add(complex ,complex ,complex *); /*复数加法*/
void mul(complex ,complex ,complex *); /*复数乘法*/
void sub(complex ,complex ,complex *); /*复数减法*/
void output();
int main(){
int i;/*输出结果*/
system("cls");
PI=atan(1)*4;
printf("Please input the size of x: ");
scanf("%d",&size_x);
printf("Please input the data in x[N]: ");
for(i=0;i<size_x;i++)
scanf("%lf%lf",&x[i].real,&x[i].img);
initW();
fft();
output();
return 0;
}
/*快速傅里叶变换*/
void fft(){
int i=0,j=0,k=0,l=0;
complex up,down,proct;
change();
for(i=0;i< log(size_x)/log(2) ;i++){ /*一级蝶形运算*/
l=1<<i;
(5)fft算法流程扩展阅读:
FFT算法很多,根据实现运算过程是否有指数因子WN可分为有、无指数因子的两类算法。
经典库利-图基算法 当输入序列的长度N不是素数(素数只能被1而它本身整除)而是可以高度分解的复合数,即N=N1N2N3…Nr时,若N1=N2=…=Nr=2,N=2则N点DFT的计算可分解为N=2×N/2,即两个N/2点DFT计算的组合,而N/2点DFT的计算又可分解为N/2=2×N/4,即两个N/4点DFT计算的组合。
依此类推,使DFT的计算形成有规则的模式,故称之为以2为基底的FFT算法。同理,当N=4时,则称之为以4为基底的FFT算法。当N=N1·N2时,称为以N1和N2为基底的混合基算法。