自然疫数据库
⑴ 大数据包括哪些
简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:
一、大数据采集
大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。
数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。
网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。
文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。
数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。
数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。
数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。
数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。
二、大数据预处理
大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。
三、大数据存储
大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:
1、基于MPP架构的新型数据库集群
采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。
较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显着的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。
2、基于Hadoop的技术扩展和封装
基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。
伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。
3、大数据一体机
这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。
四、大数据分析挖掘
从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。
1、可视化分析
可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。
具有简单明了、清晰直观、易于接受的特点。
2、数据挖掘算法
数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。
数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。
3、预测性分析
预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。
帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。
4、语义引擎
语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。
5、数据质量管理
指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。
以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:
文件存储:Hadoop HDFS、Tachyon、KFS
离线计算:Hadoop MapRece、Spark
流式、实时计算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL数据库:HBase、Redis、MongoDB
资源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式协调服务:Zookeeper
集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
数据挖掘、机器学习:Mahout、Spark MLLib
数据同步:Sqoop
任务调度:Oozie
······
想要学习更多关于大数据的知识可以加群和志同道合的人一起交流一下啊[https://sourl.cn/d9wRmb ]
⑵ 大数据前景
未来,将是大数据的时代。“得数据者得天下”,在大数据的浪潮下,谁也不愿落下,各路企业使出浑身解数,旨在大数据市场上分得一杯羹。
一、大数据繁荣催生产业链投资机会
来自一份 2014-2018年大数据产业发展前景与投资战略规划分析报告 显示,大数据产业主要涉及数据生成、存储、处理分析、应用四个环节,具体来看,包含硬件设备、处理分析环节、综合处理、语音识别、视频识别、商业智能软件、数据中心建设与维护、IT咨询、方案实施、信息安全等领域。
在大数据风靡全球的同时,我国政府也加快了对大数据相关技术的攻关,工信部发布的《物联网十二五规划》里,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析等大数据技术的重要组成部分。
随着技术的日益成熟,市场逐步向前推进,受高科技的快速发展、互联网速度的进一步提高,我国大数据产业链雏形显现,给产业链企业带来巨大的投资机会。
(资料摘自 前瞻产业研究院)
二、大数据概念股受追捧,投资热度升温
业内普遍认为,2013年为中国的大数据元年。这一年,“大数据”成为了热门搜索词汇,大数据概念逐步深入人心。基于市场对大数据的认可及对产业未来积极的预期,大数据概念股受到了国内资本的热捧。
而在资金的追捧下,大数据概念股更是身价大涨。拓尔思、股浙大网、天玑科技、银信科技、浪潮信息、同有科技、美亚柏科、用友软件等所谓的大数据概念股一度都有不错的表现。
目前,市场投资热点不多,大数据概念又是席卷A股的科技浪潮的引领者,前瞻资讯预计未来大数据的投资热度将持续升温。
三、企业并购重组活跃,向大数据产业延伸
国际市场上,无论是IT巨头还是市场新秀都嗅到了大数据市场机遇,持续开展并购,增强自身的实力。像IBM近几年已经在相关领域收购了30多家公司,凸显了其在大数据时代的雄心!
国内大数据市场也十分火热,各路企业纷纷通过并购、资产重组或股权受让等方式向大数据产业延伸,以期在这个大市场上分得一瓢羹。
首当其冲的是大数据概念股企业,美亚柏科、东方国信、捷成股份、科华恒盛等已经或正在实施并购、重组或股权置换,图谋做强做大。亚太本土最大的软件及服务的提供商用友公司目前也正在寻找并购对象,以通过并购的形式实现在大数据领域的发展和突破。
数据革命正在瓦解已经建立的产业和商业模式,面对大数据带来的无限商机,必将有更多的企业进入到这个领域。随着企业布局的进一步完善,可以预见未来大数据市场的竞争将是残酷的,大数据将给IT业界带来新一轮的洗牌。
供参考,望采纳。谢谢
满意请采纳。