当前位置:首页 » 操作系统 » playfair算法

playfair算法

发布时间: 2023-09-07 11:29:49

加密解密工具:普莱费尔密码

普莱费尔密码(英文:Playfair Cipher 或 Playfair Square)是一种使用一个关键词方格来加密字符对的加密法,1854年由一位名叫查尔斯·惠斯通(Charles Wheatstone)的英国人发明。

简介

经莱昂·普莱费尔提倡在英国军地和政府使用。它有一些不太明显的特征:密文的字母数一定是偶数;任意两个同组的字母都不会相同,如果出现这种字符必是乱码和虚码。

它使用方便而且可以让频度分析法变成瞎子,在1854到1855年的克里米亚战争和1899年的布尔战争中有广泛应用。但在1915年的一战中被破译了。

编写分三步:

1.编制密码表 

2.整理明文 

3.编写密文 构成部分:

1.密钥 

2.明文

3.密文

4.注明的某个字母代替的另一个字母。

算法

它依据一个5*5的正方形组成的密码表来编写,密码表里排列有25个字母。5*5的密码表,共有5行5列字母。第一列(或第一行)是密钥,其余按照字母顺序,如果密钥过长可占用第二列或行。密钥是一个单词或词组,若有重复字母,可将后面重复的字母去掉。当然也要把使用频率最少的字母去掉(它依据一个5*5的正方形组成的密码表来编写,密码表里排列有25个字母。如果一种语言字母超过25个,可以去掉使用频率最少的一个。如,法语一般去掉w或k,德语则是把i和j合起来当成一个字母看待,英语中z使用最少,可以去掉它)。

工具链接: http://www.atoolbox.net/Tool.php?Id=912

⑵ 密文是什么 具体给我讲解一下

密文是相对于明文说的,明文其实就是你要传达的消息,而明文通过加密之后就成了密文,密文其实是信息安全的一个词汇。帮你介绍一下。

信息安全的发展历史

通信保密科学的诞生
古罗马帝国时期的Caesar密码:能够将明文信息变换为人们看不懂的字符串,(密文),当密文传到伙伴手中时,又可方便的还原为原来的明文形式。 Caesar密码由明文字母循环移3位得到。
1568年,L.Battista发明了多表代替密码,并在美国南北战争期间有联军使用。例:Vigenere密码和Beaufort密码
1854年,Playfair发明了多字母代替密码,英国在第一次世界大战中使用了此密码。例:Hill密码,多表、多字母代替密码成为古典密码学的主流。
密码破译技术(密码分析)的发展:例:以1918年W.Friedman使用重合指数破译多表代替密码技术为里程碑。 1949年C.Shannon的《保密系统的通信理论》文章发表在贝尔系统技术杂志上。这两个成果为密码学的科学研究奠定了基础。从艺术变为科学。实际上,这就是通信保密科学的诞生,其中密码是核心技术。

公钥密码学革命
25年之后,20世纪70年代,IBM公司的DES(美国数据加密标准)和1976年Diffie-Hellman,提出了公开密钥密码思想,1977年公钥密码算法RSA的提出为密码学的发展注入了新的活力。
公钥密码掀起了一场革命,对信息安全有三方面的贡献:首次从计算复杂性上刻画了密码算法的强度,突破了Shannon仅关心理论强度的局限性;他将传统密码算法中两个密钥管理中的保密性要求,转换为保护其中一格的保密性及另一格的完整性的要求;它将传统密码算法中密钥归属从通信两方变为一个单独的用户,从而使密钥的管理复杂度有了较大下降。
公钥密码的提出,注意:一是密码学的研究逐步超越了数据的通信保密范围,开展了对数据的完整性、数字签名等技术的研究;二是随着计算机和网络的发展,密码学一逐步成为计算机安全、网络安全的重要支柱,使得数据安全成为信息安全的全新内容,超越了以往物理安全占据计算机安全的主导地位状态。

访问控制技术与可信计算机评估准则
1969年,B.Lampson提出了访问控制模型。
1973年,D.Bell 和L.Lapala,创立了一种模拟军事安全策略的计算机操作模型,这是最早也是最常用的一种计算机多级安全模型。
1985年,美国国防部在Bell-Lapala模型的基础上提出了可信计算机评估准则(通常称为橘皮书)。按照计算机系统的安全防护能力,分成8个等级。
1987年,Clark-Wilson模型针对完整性保护和商业应用提出的。
信息保障
1998年10月,美国国家安全局(NSA)颁布了信息保障技术框架1.1版,2003年2月6日,美国国防部(DOD)颁布了信息保障实施命令8500.2,从而信息保障成为美国国防组织实施信息化作战的既定指导思想。
信息保障(IA:information assurance):通过确保信息的可用性、完整性、可识别性、保密性和抵赖性来保护信息系统,同时引入保护、检测及响应能力,为信息系统提供恢复功能。这就是信息保障模型PDRR。
protect保护、detect检测、react响应、restore 恢复
美国信息保障技术框架的推进使人们意识到对信息安全的认识不要停留在保护的框架之下,同时还需要注意信息系统的检测和响应能力。
2003年,中国发布了《国家信息领导小组关于信息安全保障工作的意见》,这是国家将信息安全提到战略高度的指导性文件

信息保密技术的研究成果:
发展各种密码算法及其应用:
DES(数据加密标准)、RSA(公开密钥体制)、ECC(椭圆曲线离散对数密码体制)等。
计算机信息系统安全模型和安全评价准则:
访问监视器模型、多级安全模型等;TCSEC(可信计算机系统评价准则)、ITSEC(信息技术安全评价准则)等。

加密(Encryption)
加密是通过对信息的重新组合,使得只有收发双方才能解码并还原信息的一种手段。
传统的加密系统是以密钥为基础的,这是一种对称加密,也就是说,用户使用同一个密钥加密和解密。
目前,随着技术的进步,加密正逐步被集成到系统和网络中,如IETF正在发展的下一代网际协议IPv6。硬件方面,Intel公司也在研制用于PC机和服务器主板的加密协处理器。

身份认证(Authentication)

防火墙是系统的第一道防线,用以防止非法数据的侵入,而安全检查的作用则是阻止非法用户。有多种方法来鉴别一个用户的合法性,密码是最常用的,但由于有许多用户采用了很容易被猜到的单词或短语作为密码,使得该方法经常失效。其它方法包括对人体生理特征(如指纹)的识别,智能IC卡和USB盘。

数字签名(Digital Signature)
数字签名可以用来证明消息确实是由发送者签发的,而且,当数字签名用于存储的数据或程序时,可以用来验证数据或程序的完整性。
美国政府采用的数字签名标准(Digital Signature Standard,DSS)使用了安全哈希运算法则。用该算法对被处理信息进行计算,可得到一个160位(bit)的数字串,把这个数字串与信息的密钥以某种方式组合起来,从而得到数字签名。

内容检查(Content Inspection)
即使有了防火墙、身份认证和加密,人们仍担心遭到病毒的攻击。有些病毒通过E-mail或用户下载的ActiveX和Java小程序(Applet)进行传播,带病毒的Applet被激活后,又可能会自动下载别的Applet。现有的反病毒软件可以清除E-mail病毒,对付新型Java和ActiveX病毒也有一些办法,如完善防火墙,使之能监控Applet的运行,或者给Applet加上标签,让用户知道他们的来源。

介绍一些加密的知识

密钥加/解密系统模型
在1976年,Diffie及Hellman发表其论文“New Directions in Cryptography”[9]之前,所谓的密码学就是指对称密钥密码系统。因为加/解密用的是同一把密钥,所以也称为单一密钥密码系统。

这类算法可谓历史悠久,从最早的凯撒密码到目前使用最多的DES密码算法,都属于单一密钥密码系统。

通常,一个密钥加密系统包括以下几个部分:
① 消息空间M(Message)
② 密文空间C(Ciphertext)
③ 密钥空间K(Key)
④ 加密算法E(Encryption Algorithm)
⑤ 解密算法D(Decryption Algorithm)
消息空间中的消息M(称之为明文)通过由加密密钥K1控制的加密算法加密后得到密文C。密文C通过解密密钥K2控制的解密算法又可恢复出原始明文M。即:
EK1(M)=C
DK2(C)=M
DK2(EK1(M))=M
概念:
当算法的加密密钥能够从解密密钥中推算出来,或反之,解密密钥可以从加密密钥中推算出来时,称此算法为对称算法,也称秘密密钥算法或单密钥算法;

当加密密钥和解密密钥不同并且其中一个密钥不能通过另一个密钥推算出来时,称此算法为公开密钥算法。

1.凯撒密码变换
更一般化的移位替代密码变换为
加密:E(m)=(m+k) mod 26
解密:D(c)=(c-k) mod 26

2.置换密码
在置换密码中,明文和密文的字母保持相同,但顺序被打乱了。在简单的纵行置换密码中,明文以固定的宽度水平地写在一张图表纸上,密文按垂直方向读出;解密就是将密文按相同的宽度垂直地写在图表纸上,然后水平地读出明文。例如:
明文:encryption is the transformation of data into some unreadable form
密文:eiffob nsodml ctraee rhmtuf yeaano pttirr trinem iaota onnod nsosa

20世纪40年代,Shannon提出了一个常用的评估概念。特认为一个好的加密算法应具有模糊性和扩散性。
模糊性:加密算法应隐藏所有的局部模式,即,语言的任何识别字符都应变得模糊,加密法应将可能导致破解密钥的提示性语言特征进行隐藏;
扩散性:要求加密法将密文的不同部分进行混合,是任何字符都不在其原来的位置。

加密算法易破解的原因是未能满足这两个Shannon条件。

数据加密标准(DES)

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算.

具体方法 需要图 我放不上去对不起了
可以将DES算法归结如下:
子密钥生成:
C[0]D[0] = PC–1(K)
for 1 <= i <= 16
{C[i] = LS[i](C[i−1])
D[i] = LS[i](D[i−1])
K[i] = PC–2(C[i]D[i])}
加密过程:
L[0]R[0] = IP(x)
for 1 <= i <= 16
{L[i] = R[i−1]
R[i] = L[i−1] XOR f (R[i−1], K[i])}
c= IP−1(R[16]L[16])v
解密过程:
R[16]L[16] = IP(c)
for 1 <= i <= 16
{R[i−1] = L[i]
L[i−1] = R[i] XOR f (L[i], K[i])}
x= IP−1(L[0]R[0])
DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的“每轮”密钥值由56位的完整密钥得出来。DES用软件进行解码需要用很长时间,而用硬件解码速度非常快,但幸运的是当时大多数黑客并没有足够的设备制造出这种硬件设备。
在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。所以,当时DES被认为是一种十分强壮的加密方法。 但是,当今的计算机速度越来越快了,制造一台这样特殊的机器的花费已经降到了十万美元左右,所以用它来保护十亿美元的银行间线缆时,就会仔细考虑了。另一个方面,如果只用它来保护一台服务器,那么DES确实是一种好的办法,因为黑客绝不会仅仅为入侵一个服务器而花那么多的钱破解DES密文。由于现在已经能用二十万美圆制造一台破译DES的特殊的计算机,所以现在再对要求“强壮”加密的场合已经不再适用了

DES算法的应用误区

DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。而56位长的密钥的穷举空间为256,这意味着如果一台计算机的速度是每一秒种检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间,可见,这是难以实现的,当然,随着科学技术的发展,当出现超高速计算机后,我们可考虑把DES密钥的长度再增长一些,以此来达到更高的保密程度。
由上述DES算法介绍我们可以看到:DES算法中只用到64位密钥中的其中56位,而第8、16、24、......64位8个位并未参与DES运算,这一点,向我们提出了一个应用上的要求,即DES的安全性是基于除了8,16,24,......64位外的其余56位的组合变化256才得以保证的。因此,在实际应用中,我们应避开使用第8,16,24,......64位作为有效数据位,而使用其它的56位作为有效数据位,才能保证DES算法安全可靠地发挥作用。如果不了解这一点,把密钥Key的8,16,24,..... .64位作为有效数据使用,将不能保证DES加密数据的安全性,对运用DES来达到保密作用的系统产生数据被破译的危险,这正是DES算法在应用上的误区,留下了被人攻击、被人破译的极大隐患。

A5 算 法

序列密码简介
序列密码又称流密码,它将明文划分成字符(如单个字母)或其编码的基本单元(如0、1),然后将其与密钥流作用以加密,解密时以同步产生的相同密钥流实现。
序列密码强度完全依赖于密钥流产生器所产生的序列的随机性和不可预测性,其核心问题是密钥流生成器的设计。而保持收发两端密钥流的精确同步是实现可靠解密的关键技术。

A5算法
A5算法是一种序列密码,它是欧洲GSM标准中规定的加密算法,用于数字蜂窝移动电话的加密,加密从用户设备到基站之间的链路。A5算法包括很多种,主要为A5/1和A5/2。其中,A5/1为强加密算法,适用于欧洲地区;A5/2为弱加密算法,适用于欧洲以外的地区。这里将详细讨论A5/1算法。
A5/1算法的主要组成部分是三个长度不同的线性反馈移位寄存器(LFSR)R1、R2和R3,其长度分别为19、22和23。三个移位寄存器在时钟的控制下进行左移,每次左移后,寄存器最低位由寄存器中的某些位异或后的位填充。各寄存器的反馈多项式为:
R1:x18+x17+x16+x13
R2:x21+x20
R3:x22+x21+x20+x7
A5算法的输入是64位的会话密钥Kc和22位的随机数(帧号)。

IDEA
IDEA即国际数据加密算法,它的原型是PES(Proposed Encryption Standard)。对PES改进后的新算法称为IPES,并于1992年改名为IDEA(International Data Encryption Algorithm)。

IDEA是一个分组长度为64位的分组密码算法,密钥长度为128位,同一个算法即可用于加密,也可用于解密。
IDEA的加密过程包括两部分:
(1) 输入的64位明文组分成四个16位子分组:X1、X2、X3和X4。四个子分组作为算法第一轮的输入,总共进行八轮的迭代运算,产生64位的密文输出。
(2) 输入的128位会话密钥产生八轮迭代所需的52个子密钥(八轮运算中每轮需要六个,还有四个用于输出变换)

子密钥产生:输入的128位密钥分成八个16位子密钥(作为第一轮运算的六个和第二轮运算的前两个密钥);将128位密钥循环左移25位后再得八个子密钥(前面四个用于第二轮,后面四个用于第三轮)。这一过程一直重复,直至产生所有密钥。
IDEA的解密过程和加密过程相同,只是对子密钥的要求不同。下表给出了加密子密钥和相应的解密子密钥。
密钥间满足:
Zi(r) ⊙ Zi(r) −1=1 mod (216+1)
−Zi(r)  +  Zi(r) =0 mod (216+1)

Blowfish算法
Blowfish是Bruce Schneier设计的,可以免费使用。
Blowfish是一个16轮的分组密码,明文分组长度为64位,使用变长密钥(从32位到448位)。Blowfish算法由两部分组成:密钥扩展和数据加密。

1. 数据加密
数据加密总共进行16轮的迭代,如图所示。具体描述为(将明文x分成32位的两部分:xL, xR)
for i = 1 to 16
{
xL = xL XOR Pi
xR = F(xL) XOR xR
if
{
交换xL和xR

}
}
xR = xR XOR P17
xL = xL XOR P18
合并xL 和xR
其中,P阵为18个32位子密钥P1,P2,…,P18。
解密过程和加密过程完全一样,只是密钥P1,P2,…,P18以逆序使用。
2. 函数F
把xL分成四个8位子分组:a, b, c 和d,分别送入四个S盒,每个S盒为8位输入,32位输出。四个S盒的输出经过一定的运算组合出32位输出,运算为
F(xL) =((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod 232
其中,Si,x表示子分组x(x=a、b、c或d)经过Si (i=1、2、3或4)盒的输出。

没有太多地方写了,不把整个过程列上面了,就简单介绍一下好了。

GOST算法
GOST是前苏联设计的分组密码算法,为前苏联国家标准局所采用,标准号为:28147–89[5]。
GOST的消息分组为64位,密钥长度为256位,此外还有一些附加密钥,采用32轮迭代。

RC5算法
RC5是一种分组长度、密钥长度和加密迭代轮数都可变的分组密码体制。RC5算法包括三部分:密钥扩展、加密算法和解密算法。

PKZIP算法
PKZIP加密算法是一个一次加密一个字节的、密钥长度可变的序列密码算法,它被嵌入在PKZIP数据压缩程序中。
该算法使用了三个32位变量key0、key1、key2和一个从key2派生出来的8位变量key3。由密钥初始化key0、key1和key2并在加密过程中由明文更新这三个变量。PKZIP序列密码的主函数为updata_keys()。该函数根据输入字节(一般为明文),更新三个32位的变量并获得key3。

重点:单向散列函数

MD5 算 法

md5的全称是message-digestalgorithm5(信息-摘要算法),在90年代初由和rsadatasecurityinc的ronaldl.rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向32位的电脑。
rivest在1989年开发出md2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,rogier和chauvaud发现如果忽略了检验和将产生md2冲突。md2算法的加密后结果是唯一的--既没有重复。 为了加强算法的安全性,rivest在1990年又开发出md4算法。md4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod512=448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。denboer和bosselaers以及其他人很快的发现了攻击md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到md4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,md4就此被淘汰掉了。 尽管md4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了md5以外,其中比较有名的还有sha-1、ripe-md以及haval等。

一年以后,即1991年,rivest开发出技术上更为趋近成熟的md5算法。它在md4的基础上增加了"安全-带子"(safety-belts)的概念。虽然md5比md4稍微慢一些,但却更为安全。这个算法很明显的由四个和md4设计有少许不同的步骤组成。在md5算法中,信息-摘要的大小和填充的必要条件与md4完全相同。denboer和bosselaers曾发现md5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 vanoorschot和wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-forcehashfunction),而且他们猜测一个被设计专门用来搜索md5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代md5算法的md6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响md5的安全性。上面所有这些都不足以成为md5的在实际应用中的问题。并且,由于md5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,md5也不失为一种非常优秀的中间技术),md5怎么都应该算得上是非常安全的了。

算法
MD表示消息摘要(Message Digest)。MD5是MD4的改进版,该算法对输入的任意长度消息产生128位散列值(或消息摘要。MD5算法可用图4-2表示。
对md5算法简要的叙述可以为:md5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

1) 附加填充位
首先填充消息,使其长度为一个比512的倍数小64位的数。填充方法:在消息后面填充一位1,然后填充所需数量的0。填充位的位数从1~512。
2) 附加长度
将原消息长度的64位表示附加在填充后的消息后面。当原消息长度大于264时,用消息长度mod 264填充。这时,消息长度恰好是512的整数倍。令M[0 1…N−1]为填充后消息的各个字(每字为32位),N是16的倍数。

3) 初始化MD缓冲区
初始化用于计算消息摘要的128位缓冲区。这个缓冲区由四个32位寄存器A、B、C、D表示。寄存器的初始化值为(按低位字节在前的顺序存放):
A: 01 23 45 67
B: 89 ab cd ef
C: fe dc ba 98
D: 76 54 32 10

4) 按512位的分组处理输入消息
这一步为MD5的主循环,包括四轮,如图4-3所示。每个循环都以当前的正在处理的512比特分组Yq和128比特缓冲值ABCD为输入,然后更新缓冲内容。
四轮操作的不同之处在于每轮使用的非线性函数不同,在第一轮操作之前,首先把A、B、C、D复制到另外的变量a、b、c、d中。这四个非线性函数分别为(其输入/输出均为32位字):
F(X,Y,Z) = (XY)((~X) Z)
G(X,Y,Z) = (XZ)(Y(~Z))
H(X,Y,Z) = XYZ
I(X,Y,Z) = Y(X(~Z))
其中,表示按位与;表示按位或;~表示按位反;表示按位异或。
此外,由图4-4可知,这一步中还用到了一个有64个元素的表T[1..64],T[i]=232×abs(sin(i)),i的单位为弧度。
根据以上描述,将这一步骤的处理过程归纳如下:
for i = 0 to N/16−1 do
/* 每次循环处理16个字,即512字节的消息分组*/
/*把第i个字块(512位)分成16个32位子分组拷贝到X中*/
for j = 0 to 15 do
Set X[j] to M[i*16+j]
end /*j 循环*/
/*把A存为AA,B存为BB,C存为CC,D存为DD*/
AA = A
BB = B
CC = C
DD = D
/* 第一轮*/
/* 令[abcd k s i]表示操作
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s)
其中,Y<<<s表示Y循环左移s位*/
/* 完成下列16个操作*/
[ABCD 0 7 1  ] [DABC 1 12 2  ] [CDAB 2 17 3  ] [BCDA 3 22 4  ]
[ABCD 4 7 5  ] [DABC 5 12 6  ] [CDAB 6 17 7  ] [BCDA 7 22 8  ]
[ABCD 8 7 9  ] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]
/* 第二轮*/
/*令[abcd k s i]表示操作
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s)*/
/*完成下列16个操作*/
[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

/*第三轮*/
/*令[abcd k s t]表示操作
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s)*/
/*完成以下16个操作*/
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]
/*第四轮*/
/*令[abcd k s t]表示操作
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s) */
/*完成以下16个操作*/
[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]
A = A + AA
B = B + BB
C = C + CC
D = D + DD
end /*i循环*/
5) 输出
由A、B、C、D四个寄存器的输出按低位字节在前的顺序(即以A的低字节开始、D的高字节结束)得到128位的消息摘要。
以上就是对MD5算法的描述。MD5算法的运算均为基本运算,比较容易实现且速度很快。

安全散列函数(SHA)

算法
SHA是美国NIST和NSA共同设计的安全散列算法(Secure Hash Algorithm),用于数字签名标准DSS(Digital Signature Standard)。SHA的修改版SHA–1于1995年作为美国联邦信息处理标准公告(FIPS PUB 180–1)发布[2]。

⑶ 除了栅栏密码,恺撒密码和维吉尼亚密码,还有哪些密码

培根密码
弗朗西斯·培根,英国人,他是第一个意识到科学技术能够改变世界面貌的哲学家。他不仅意识到这一点,而且积极投入到科学技术的探索中。他对密码学的兴趣很浓,设计出的密码也丰富了密码学的内容。
他设计的密码非常独特,它可以不加过多的“雕饰”,几乎以本来的“素面”在你眼前晃过,而不会引起你的注意。
培根所用的密码是一种本质上用二进制数设计的。不过,他没有用通常的0和1来表示,而是采用a和b。下面是他设计的26个英文字母二进制表示法。
A aaaaa
B aaaab
C aaaba
D aaabb
E aabaa
F aabab
G aabba
H aabbb
I abaaa
J abaab
K ababa
L ababb
M abbaa
N abbab
O abbba
P abbbb
Q baaaa
R baaab
S baaba
T baabb
U babaa
V babab
W babba
X babbb
Y bbaaa
Z bbaab

编写密码时,把密文每五个字母为一组,凡是其中的正体字母代表a,斜体字母代表b。随意选取句子或文章,就可以通过改变字母的写法来加密了。

此外,还有
字母表顺序-数字
进制转换密码
Mod算法
倒序
间隔
字母频率
凯撒密码(Caesar Shifts, Simple Shift)
凯撒移位(中文版)
栅栏密码(The Rail-Fence Cipher)
维吉尼亚密码(Vigenère Cipher)
Polybius密码(Polybius Cipher)
ADFGX/ADFGVX密码(ADFGX/ADFGVX Cipher)
ADFGX
ADFGVX
乘法密码(Multiplication Cipher)
仿射密码(Affine Shift)
希尔密码(Hill Cipher)
加密
解密
Playfair密码(Playfair Cipher)
摩斯电码
置换密码(Transposition Cipher)
替代密码(Monoalphabetic Substitution)
字母表数字
字母表代码
反字母表
随机乱序字母
棋盘密码
键盘密码
键盘移位
软键盘密码
数字小键盘密码
手机键盘密码
数字谐音密码
数字记忆编码
网络/Google/网页字符
网络字符(GB2312)
Google字符(URI)
网页编码(Unicode)
Alt+数字小键盘
MD5

超字数不一一解释了。可以网络。

⑷ 求密文(凯撒密码)

已知凯撒密码的计算公式为 f(a)=(a+k) mod n,设k=3,n=26,明文P=COMPUTERSYSTEM,求密文。解:明文字母代码表如下如下:由于k=3,对于明文P=COMPUTERSYSTEMf(C)=(2+3) mod 26=5=Ff(O)=(14+3) mod 26=17=Rf(M)=(12+3) mod 26=15=Pf(P)=(15+3) mod 26=18=Sf(U)=(20+3) mod 26=23=Xf(T)=(19+3) mod 26=22=Wf(E)=(4+3) mod 26=7=Hf(R)=(17+3) mod 26=20=Uf(S)=(18+3) mod 26=21=Vf(Y)=(24+3) mod 26=1=Bf(S)=(18+3) mod 26=21=Vf(T)=(19+3) mod 26=22=Wf(E)=(4+3) mod 26=7=Hf(M)=(12+3) mod 26=15=P所以密文C=Ek(P)=FRPSXWHUVBVWHP

⑸ 替代密码的替代密码的分类

根据密码算法加解密时使用替换表多少的不同,替代密码又可分为单表替代密码和多表替代密码。
单表替代密码的密码算法加解密时使用一个固定的替换表。单表替代密码又可分为一般单表替代密码、移位密码、仿射密码、密钥短语密码。
多表替代密码的密码算法加解密时使用多个替换表。 多表替代密码有弗吉尼亚密码、希尔(Hill)密码、一次一密钥密码、Playfair密码。 单表替代密码对明文中的所有字母都使用一个固定的映射(明文字母表到密文字母表)。设A={a0, a1,…, an-1}为包含了n个字母的明文字母表;
B={b0, b1,…, bn-1} 为包含n个字母的密文字母表,单表替代密码使用了A到B的映射关系:f:A→B, f ( ai )= bj
一般情况下,f 是一一映射,以保证加密的可逆性。加密变换过程就是将明文中的每一个字母替换为密文字母表的一个字母。而单表替代密码的密钥就是映射f或密文字母表。经常密文字母表与明文字母表的字符集是相同的,这时的密钥就是映射f。下面给出几种典型的单表替代密码。
⒈一般单表替代密码
一般单表替代密码的原理是以26个英文字母集合上的一个置换π为密钥,对明文消息中的每个字母依次进行变换。可描述为:明文空间M和密文空间C都是26个英文字母的集合,密钥空间K={π:Z26→Z26|π是置换},是所有可能置换的集合。
对任意π∈K,定义:
加密变换:eπ(m)=π(m)=c
解密变换:dπ(c) = π-1(c)=m, π-1是π的逆置换。
例:设置换π的对应关系如下:
a b c d e f g h i j k l m n o p q r s t u v w x y z
q w e r t y u i o p a s d f g h j k l z x c v b n m
试用单表替代密码以π为密钥对明文消息message加密,然后写出逆置换 ,并对密文解密。
解:以π为密钥用单表替代密码对明文消息message加密,所得
密文消息为: π(m) π(e) π(s) π(s) π(a) π(g) π(e)=dtllqut
一般单表替代密码算法特点:
▲密钥空间K很大,|K|=26!=4×10^26 ,破译者穷举搜索计算不可行,1微秒试一个密钥,遍历全部密钥需要1013 年。
▲移位密码体制是替换密码体制的一个特例,它仅含26个置换做为密钥空间。
密钥π不便记忆。
▲针对一般替换密码密钥π不便记忆的问题,又衍生出了各种形式单表替代密码。
⒉移位密码
明文空间M、密文空间C都是和密钥空间K满足,即把26个英文字母与整数0,1,2,…,25一一对应。
加密变换,E={E:Z26→Z26, Ek (m) = m + k (mod26)| m∈M, k∈K }
解密变换,D={D:Z26→Z26, Dk (c) = c-k (mod26)| c∈C, k∈K }
解密后再把Z26中的元素转换英文字母。
显然,移位密码是前面一般单表替代密码的一个特例。当移位密码的 密钥k=3时,就是历史上着名的凯撒密码(Caesar)。根据其加密函数特 点,移位密码也称为加法密码。
⒊仿射密码
仿射密码也是一般单表替代密码的一个特例,是一种线性变换。仿射密码的明文空间和密文空间与移位密码相同,但密钥空间为 K={(k1,k2)| k1,k2∈Z26,gcd(k1,26)=1}
对任意m∈M,c∈C,k = (k1,k2)∈K,定义加密变换为 c = Ek (m) = k1 m +k2 (mod 26)
相应解密变换为: m = Dk (c) = k1 (c-k2) (mod 26)
其中,K1 k1=1mod26 。很明显,k1=1时即为移位密码,而k2=1则称为乘法密码。
⒋密钥短语密码
选用一个英文短语或单词串作为密钥,去掉其中重复的字母得到一个无重复字母的字符串,然后再将字母表中的其它字母依次写于此字母串后,就可构造出一个字母替代表。当选择上面的密钥进行加密时,若明文为“china”,则密文为“yfgmk”。显然,不同的密钥可以得到不同的替换表,对于明文为英文单词或短语的情况时,密钥短语密码最多可能有26!=4×1026个不同的替换表。 单表替代密码表现出明文中单字母出现的频率分布与密文中相同, 多表替代密码使用从明文字母到密文字母的多个映射来隐藏单字母出现 的频率分布,每个映射是简单替代密码中的一对一映射多表替代密码将 明文字母划分为长度相同的消息单元,称为明文分组,对明文成组地进 行替代,同一个字母有不同的密文,改变了单表替代密码中密文的唯一 性,使密码分析更加困难。
多表替代密码的特点是使用了两个或两个以上的替代表。着名的维吉尼亚密码和Hill密码等均是多表替代密码。
⒈维吉尼亚密码
维吉尼亚密码是最古老而且最着名的多表替代密码体制之一,与位移密码体制相似,但维吉尼亚密码的密钥是动态周期变化的。
该密码体制有一个参数n。在加解密时,同样把英文字母映射为0-25的数字再进行运算,并按n个字母一组进行变换。明文空间、密文空间及密钥空间都是长度为n的英文字母串的集合,因此可表示
加密变换定义如下:
设密钥 k=(k1,k2,…,kn), 明文m=(m1,m2,…,mn), 加密变换为:
Ek(m)=(c1,c2,…,cn),
其中ci(mi + ki)(mod26),i =1,2,…,n
对密文 c=(c1,c2,…,cn), 解密变换为:
Dk(c)=(m1,m2,…,mn), 其中 mi=(ci -ki)(mod26),i =1,2,…,n
⒉希尔(Hill)密码
Hill密码算法的基本思想是将n个明文字母通过线性变换,将它们转换为n个密文字母。解密只需做一次逆变换即可。
⒊一次一密密码(One Time Pad)
若替代码的密钥是一个随机且不重复的字符序列,这种密码则称为一次一密密码,因为它的密钥只使用一次。该密码体制是美国电话电报公司的Joseph Mauborgne在1917年为电报通信设计的一种密码,所以又称为Vernam密码。Vernam密码在对明文加密,前首先将明文编码为(0,1)序列,然后再进行加密变换。
设m=(m1 m2 m3 … mi …)为明文,k=(k1 k2 k3 … ki …)为密钥,其中mi,ki ∈(0,1), i≥1, 则加密变换为: c=(c1 c2 c3 … ci …) ,其中ci = mi &Aring; ki , i≥1,
这里为模2加法(或异或运算)
解密变换为:
m=(m1 m2 m3 … mi …) ,其中mi = ci &Aring; ki , i≥1,
在应用Vernam密码时,如果对不同的明文使用不同的随机密钥,这时Vernam密码为一次一密密码。由于每一密钥序列都是等概率随机产生的,敌手没有任何信息用来对密文进行密码分析。香农(Claude Shannon)从信息论的角度证明了这种密码体制在理论上是不可破译的。但如果重复使用同一个密钥加密不同的明文,则这时的Vernam密码就较为容易破译。
若敌手获得了一个密文c=(c1 c2 c3 … ci …) 和对应明文m=(m1 m2 m3 … mi …) 时,就很容易得出密钥 k=(k1 k2 k3 … ki …) ,其中ki = ci&Aring; mi,i≥1。 故若重复使用密钥,该密码体制就很不安全。
实际上Vernam密码属于序列密码,加密解密方法都使用模2加,这使软
硬件实现都非常简单。但是,这种密码体制虽然理论上是不可破译的,然而
在实际应用中,真正的一次一密系统却受到很大的限制,其主要原因在于该
密码体制要求:
① 密钥是真正的随机序列;
② 密钥长度大于等于明文长度;
③ 每个密钥只用一次(一次一密)。
这样,分发和存储这样的随机密钥序列,并确保密钥的安全都是很因难
的;另外,如何生成真正的随机序列也是一个现实问题。因此,人们转而寻
求实际上不对攻破的密码系统。
⒋Playfair密码
Playfair密码是一种着名的双字母单表替代密码,实际上Playfair密码属于一种多字母替代密码,它将明文中的双字母作为一个单元对待,并将这些单元转换为密文字母组合。替代时基于一个5×5的字母矩阵。字母矩阵构造方法同密钥短语密码类似,即选用一个英文短语或单词串作为密钥,去掉其中重复的字母得到一个无重复字母的字符串,然后再将字母表中剩下的字母依次从左到右、从上往下填入矩阵中,字母I,j占同一个位置。

⑹ 传统的加密方法有哪些

本文只是概述几种简单的传统加密算法,没有DES,没有RSA,没有想象中的高端大气上档次的东东。。。但是都是很传统很经典的一些算法

首先,提到加密,比如加密一段文字,让其不可读,一般人首先会想到的是将其中的各个字符用其他一些特定的字符代替,比如,讲所有的A用C来表示,所有的C用E表示等等…其中早的代替算法就是由Julius Caesar发明的Caesar,它是用字母表中每个字母的之后的第三个字母来代替其本身的(C=E(3,p)=(p+3) mod 26),但是,这种加密方式,很容易可以用穷举算法来破解,毕竟只有25种可能的情况..

为了改进上诉算法,增加其破解的难度,我们不用简单的有序的替代方式,我们让替代无序化,用其中字母表的一个置换(置换:有限元素的集合S的置换就是S的所有元素的有序排列,且每个元素就出现一次,如S={a,b}其置换就只有两种:ab,ba),这样的话,就有26!种方式,大大的增加了破解的难度,但是这个世界聪明人太多,虽然26!很多,但是语言本身有一定的特性,每个字母在语言中出现的相对频率可以统计出来的,这样子,只要密文有了一定数量,就可以从统计学的角度,得到准确的字母匹配了。

上面的算法我们称之为单表代替,其实单表代替密码之所以较容易被攻破,因为它带有原始字母使用频率的一些统计学特征。有两种主要的方法可以减少代替密码里明文结构在密文中的残留度,一种是对明文中的多个字母一起加密,另一种是采用多表代替密码。

先说多字母代替吧,最着名的就是playfair密码,它把明文中的双字元音节作为一个单元并将其转换成密文的双字元音节,它是一个基于由密钥词构成的5*5的字母矩阵中的,一个例子,如密钥为monarchy,将其从左往右从上往下填入后,将剩余的字母依次填入剩下的空格,其中I/J填入同一个空格:

对明文加密规则如下:
1 若p1 p2在同一行,对应密文c1 c2分别是紧靠p1 p2 右端的字母。其中第一列被看做是最后一列的右方。
2 若p1 p2在同一列,对应密文c1 c2分别是紧靠p1 p2 下方的字母。其中第一行被看做是最后一行的下方。
3 若p1 p2不在同一行,不在同一列,则c1 c2是由p1 p2确定的矩形的其他两角的字母,并且c1和p1, c2和p2同行。
4 若p1 p2相同,则插入一个事先约定的字母,比如Q 。
5 若明文字母数为奇数时,则在明文的末端添加某个事先约定的字母作为填充。

虽然相对简单加密,安全性有所提高,但是还是保留了明文语言的大部分结构特征,依旧可以破解出来,另一个有意思的多表代替密码是Hill密码,由数学家Lester Hill提出来的,其实就是利用了线性代数中的可逆矩阵,一个矩阵乘以它的逆矩阵得到单位矩阵,那么假设我们对密文每m个字母进行加密,那么将这m个字母在字母表中的序号写成矩阵形式设为P(如abc,[1,2,3]),密钥就是一个m阶的矩阵K,则C=P*K mod26,,解密的时候只要将密文乘上K的逆矩阵模26就可以了。该方法大大的增加了安全性。

热点内容
ftpdos命令上传 发布:2025-01-31 08:14:44 浏览:105
intenumjava 发布:2025-01-31 08:14:37 浏览:802
android3x 发布:2025-01-31 08:13:03 浏览:600
如何购买安卓版live2d 发布:2025-01-31 08:13:01 浏览:279
python交互输入 发布:2025-01-31 08:12:53 浏览:427
requestdatapython 发布:2025-01-31 08:02:01 浏览:44
javades加密工具 发布:2025-01-31 07:54:04 浏览:244
电话如何配置ip 发布:2025-01-31 07:48:48 浏览:300
2021奔驰e300l哪个配置性价比高 发布:2025-01-31 07:47:14 浏览:656
sqlserver2008光盘 发布:2025-01-31 07:32:13 浏览:578