多分类算法
⑴ 基于支持向量机的多分类算法有哪些
作为一种新兴的机器学习方法,基于统计学习理论的支持向量机,最初是用来解决二类分类问题的。对于实际中主要遇到的多类分类问题,目前常用的两大类改进推广方法为"分解—重组"法和"直接求解"法。
⑵ 哪些机器学习算法可以处理多分类
maxsoft作为logistics二分类的改进版,天生适合多分类;神经网络(如bp神经网络,随机权神经网络,RBF神经网络等);通过建立多个支持向量机或者最小二乘支持向量机分类模型,通过投票算法选择概率最大的分类标签;也可以通过聚类算法(KNN,kMeans等)等无监督学习算法实现分类。
朴素贝叶斯分类器算法是最受欢迎的学习方法之一,按照相似性分类,用流行的贝叶斯概率定理来建立机器学习模型,特别是用于疾病预测和文档分类。 它是基于贝叶斯概率定理的单词的内容的主观分析的简单分类。
如果特征数量远大于训练样本数,则使用逻辑回归或线性核方法的SVM。
如果特征数较小,而样本数量相对较多,可以考虑高斯核方法的SVM。
如果特征数少儿样本数极大,可以考虑增加一些特征,再使用逻辑回归或线性核方法的SVM
神经网络则对上述情况都可适用,但训练时间较长。
想要学习了解更多机器学习的信息,推荐CDA数据分析师课程。CDA 与国际知名考试服务机构 Pearson VUE 合作,认证考点覆盖全球。课程内容综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。 点击预约免费试听课。
⑶ 如何用weka将多种分类算法集成起来
需要将文件转换成标称(nominal)类型,weka把exel中的数字看作是数据类型,不能处理,从而导致Apriori算法没法用。
WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),同时weka也是新西兰的一种鸟名,而WEKA的主要开发者来自新西兰。wekaWEKA作为一个公开的数据挖掘工作,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以参考weka的接口文档。在weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情。
2005年8月,在第11届ACM SIGKDD国际会议上,怀卡托大学的Weka小组荣获了数据挖掘和知识探索领域的最高服务奖,Weka系统得到了广泛的认可,被誉为数据挖掘和机器学习 历史上的里程碑,是现今最完备的数据挖掘工具之一(已有11年的发展历史)。Weka的每月次数已超过万次。
⑷ 用于数据挖掘的分类算法有哪些,各有何优劣
1.朴素贝叶斯(Naive Bayes, NB)
超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。如果你想做类似半监督学习,或者是既要模型简单又要性能好,NB值得尝试。
2.Logistic回归(Logistic Regression, LR)
LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机(SVM)不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型(使用在线梯度下降法)。如果你想要一些概率信息(如,为了更容易的调整分类阈值,得到分类的不确定性,得到置信区间),或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树(Decision Tree, DT)
DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题(例如,DT可以轻松的处理这种情况:属于A类的样本的特征x取值往往非常小或者非常大,而属于B类的样本的特征x取值在中间范围)。DT的主要缺点是容易过拟合,这也正是随机森林(Random Forest, RF)(或者Boosted树)等集成学习算法被提出来的原因。此外,RF在很多分类问题中经常表现得最好(我个人相信一般比SVM稍好),且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法。
4.支持向量机(Support Vector Machine, SVM)
很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。由于较大的内存需求和繁琐的调参,我认为RF已经开始威胁其地位了。
⑸ 可用于分类的算法有哪些
太多了,
最不实用但是分类错误率最低的:贝叶斯方法.
最简单的是最近邻方法,从最近邻方法又引申出现在极为流行的基于实例(或基于记忆)的方法(Memory Based).
经典的:隐马尔可夫模型(HMM),最大熵,条件随机场(CRF,这个比较新)
最流行的:winnow,bagging,ada boost等等
⑹ 为什么需要很多分类算法验证性能
说出什么时候是不太确定的,或者获得置信区间),或你期望未来接收更多想要快速并入模型中的训练数据;
⑺ fisher算法怎么实现多个类样的分类,我怎么感觉fisher算法只能做两个类样的分类
有办法实现多类:首先实现两类fisher算法,两类fisher算法能够返回最接近待测样品的类别,然后用返回的类别和新的类别做两类fisher运算,又能够得到比较接近的类别,以此类推,直到所有的类别,最后得出未知样品的类别。
⑻ 聚类算法和分类算法有什么区别么
聚类是未知结果会有多少类的,即可能聚成10个类也可能聚成100个类,只是根据某些相似性条件把数据聚合在一起,当然也有让用户自定义类数目的聚类算法,但这个数目也不好定的。分类是已知一共有多少类,并明确知道该类的特点,然后把未知的按一定规则分到某一个类中
聚类聚类的数据集要比较多,这样才有东西聚成一堆一堆的。分类可以多可以少,当然数据量大才能很好地说明分类算法的优异。但实际上分类算法在确定某些规则后,你可以只有一个未知的数据也可以把它分到某一个类别当中,但聚类如果只有一个未知的数据怎么聚啊。
⑼ svm在多类分类算法中的分析和应用
SVM是Support Vector Machine 的缩写,翻译过来就是支持向量机,属于一种机器学习算法,类似于人工神经网络,但是分类的效果好于神经网络,而且算法固定,不会出现网络输出不收敛或者随机性较大的情况。
svm本身是一个二元分类器,你要进行多元分类,必须构造多分类算法,常见的是 一对一 和 一对多 算法。网上关于支持向量机的论文很多,常用的计算工具有基于 MATLAB 的 OSU-SVM 工具包 和 LS-SVM 工具包,效果都还不错。
⑽ 适合于多分类的半监督学习算法有哪些
maxsoft作为logistics二分类的改进版,天生适合多分类;神经网络(如bp神经网络,随机权神经网络,RBF神经网络等);通过建立多个支持向量机或者最小二乘支持向量机分类模型,通过投票算法选择概率最大的分类标签;也可以通过聚类算法(KNN,kMeans等)等无监督学习算法实现分类。或许不太完善,欢迎补充。(机器学习算法与Python学习)