当前位置:首页 » 操作系统 » 插值算法史

插值算法史

发布时间: 2023-09-03 08:14:29

⑴ 线性插值法计算公式是什么

线性插值法计算公式:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。其中Y2>Y1,X2>X>X1。线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为零。线性插值相比其他插值方式,如抛物线插值,具有简单、方便的特点。线性插值可以用来近似代替原函数,也可以用来计算得到查表过程中表中没有的数值。

线性插值使用的原因

目前,线性插值算法使用比较广泛。在很多场合我们都可以使用线性插值。其中,最具代表性的使用方法是变量之间的对应关系没有明确的对应关系,无法使用公式来描述两个变量之间的对应关系,在这种情况下使用线性插值是比较好的解决办法。可以在变量的变化区间上取若干个离散的点,以及对应的输出值,然后将对应关系分成若干段,当计算某个输入对应的输出时,可以进行分段线性插值。

⑵ 双线性插值法原理 python实现

码字不易,如果此文对你有所帮助,请帮忙点赞,感谢!

一. 双线性插值法原理:

        ① 何为线性插值?

        插值就是在两个数之间插入一个数,线性插值原理图如下:

        ② 各种插值法:

        插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:

        srcX = dstX * (srcWidth/dstWidth)

        srcY = dstY * (srcHeight/dstHeight)

        (dstX,dstY)表示目标图像的某个坐标点,(srcX,srcY)表示与之对应的原图像的坐标点。srcWidth/dstWidth 和 srcHeight/dstHeight 分别表示宽和高的放缩比。

        那么问题来了,通过这个公式算出来的 srcX, scrY 有可能是小数,但是原图像坐标点是不存在小数的,都是整数,得想办法把它转换成整数才行。

        不同插值法的区别就体现在 srcX, scrY 是小数时,怎么将其变成整数去取原图像中的像素值。

        最近邻插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入选取最接近的整数。这样的做法会导致像素变化不连续,在目标图像中产生锯齿边缘。

        双线性插值(Bilinear Interpolation):双线性就是利用与坐标轴平行的两条直线去把小数坐标分解到相邻的四个整数坐标点。权重与距离成反比。

        双三次插值(Bicubic Interpolation):与双线性插值类似,只不过用了相邻的16个点。但是需要注意的是,前面两种方法能保证两个方向的坐标权重和为1,但是双三次插值不能保证这点,所以可能出现像素值越界的情况,需要截断。

        ③ 双线性插值算法原理

        假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,然后再在 y 方向上进行线性插值,最终得到双线性插值的结果。

    ④ 举例说明

二. python实现灰度图像双线性插值算法:

灰度图像双线性插值放大缩小

import numpy as np

import math

import cv2

def double_linear(input_signal, zoom_multiples):

    '''

    双线性插值

    :param input_signal: 输入图像

    :param zoom_multiples: 放大倍数

    :return: 双线性插值后的图像

    '''

    input_signal_cp = np.(input_signal)  # 输入图像的副本

    input_row, input_col = input_signal_cp.shape # 输入图像的尺寸(行、列)

    # 输出图像的尺寸

    output_row = int(input_row * zoom_multiples)

    output_col = int(input_col * zoom_multiples)

    output_signal = np.zeros((output_row, output_col)) # 输出图片

    for i in range(output_row):

        for j in range(output_col):

            # 输出图片中坐标 (i,j)对应至输入图片中的最近的四个点点(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值

            temp_x = i / output_row * input_row

            temp_y = j / output_col * input_col

            x1 = int(temp_x)

            y1 = int(temp_y)

            x2 = x1

            y2 = y1 + 1

            x3 = x1 + 1

            y3 = y1

            x4 = x1 + 1

            y4 = y1 + 1

            u = temp_x - x1

            v = temp_y - y1

            # 防止越界

            if x4 >= input_row:

                x4 = input_row - 1

                x2 = x4

                x1 = x4 - 1

                x3 = x4 - 1

            if y4 >= input_col:

                y4 = input_col - 1

                y3 = y4

                y1 = y4 - 1

                y2 = y4 - 1

            # 插值

            output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])

    return output_signal

# Read image

img = cv2.imread("../paojie_g.jpg",0).astype(np.float)

out = double_linear(img,2).astype(np.uint8)

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 灰度图像双线性插值实验结果:

四. 彩色图像双线性插值python实现

def BiLinear_interpolation(img,dstH,dstW):

    scrH,scrW,_=img.shape

    img=np.pad(img,((0,1),(0,1),(0,0)),'constant')

    retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

    for i in range(dstH-1):

        for j in range(dstW-1):

            scrx=(i+1)*(scrH/dstH)

            scry=(j+1)*(scrW/dstW)

            x=math.floor(scrx)

            y=math.floor(scry)

            u=scrx-x

            v=scry-y

            retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]

    return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('3.png')

五. 彩色图像双线性插值实验结果:

六. 最近邻插值算法和双三次插值算法可参考:

        ① 最近邻插值算法: https://www.cnblogs.com/wojianxin/p/12515061.html

         https://blog.csdn.net/Ibelievesunshine/article/details/104936006

        ② 双三次插值算法: https://www.cnblogs.com/wojianxin/p/12516762.html

        https://blog.csdn.net/Ibelievesunshine/article/details/104942406

七. 参考内容:

         https://www.cnblogs.com/wojianxin/p/12515061.html

         https://blog.csdn.net/Ibelievesunshine/article/details/104939936

⑶ 什么是插值算法

插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
1、Lagrange插值:
Lagrange插值是n次多项式插值,其成功地用构造插值基函数的 方法解决了求n次多项式插值函数问题;
★基本思想将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利 用插值条件⑴确定其中的待定函数,从而求出插值多项式。

2、Newton插值:
Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点;
★基本思想将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件⑴确定Pn(x)的待定系数,以求出所要的插值函数。

3、Hermite插值:
Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值
求一个2n+1次多项式H2n+1(x)满足插值条件
H2n+1(xk)=yk
H'2n+1(xk)=y'k k=0,1,2,……,n ⒀
如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数
一般有更好的密合度;
★基本思想
利用Lagrange插值函数的构造方法,先设定函数形式,再利
用插值条件⒀求出插值函数.

4、分段插值:
插值多项式余项公式说明插值节点越多,误差越小,函数逐近越好,但后来人们发现,事实并非如此,例如:取被插函数,在[-5,5]上的n+1个等距节点:计算出f(xk)后得到Lagrange插值多项式Ln(x),考虑[-5,5]上的一点x=5-5/n,分别取n=2,6,10,14,18计算f(x),Ln(x)及对应的误差Rn(x),得下表
从表中可知,随节点个数n的增加,误差lRn(x)l不但没减小,反而不断的增大.这个例子最早是由Runge研究,后来人们把这种节点加密但误差增大的现象称为Runge现象.出现Runge现象的原因主要是当节点n较大时,对应
的是高次插值多项式,此差得积累"淹没"了增加节点减少的精度.Runge现象否定了用高次插值公式提高逼近精度的想法,本节的分段插值就是克服Runge现象引入的一种插值方法.
分段多项式插值的定义为
定义2: a=x0<x1<…<xn=b: 取[a,b]上n+1个节点 并给定在这些节点 上的函数值f(xR)=yR R=0,1,…,n
如果函数Φ(x)满足条件
i) Φ(x)在[a,b]上连续
ii) Φ(xr)=yR,R =0,1,…,n
iii) Φ(x)zai 每个小区间[xR,xR+1]是m次多项式,
R=0,1,…,n-1则称Φ(x)为f(x)在[a,b]上的分段m次插值多项式
实用中,常用次数不超过5的底次分段插值多项式,本节只介绍分段线性插值和分段三次Hermite插值,其中分段三次Hermite插值还额外要求分段插值函数Φ(x)
在节点上与被插值函数f(x)有相同的导数值,即
★基本思想将被插值函数f〔x〕的插值节点 由小到大 排序,然后每对相邻的两个节点为端点的区间上用m 次多项式去近似f〔x〕.
例题
例1 已知f(x)=ln(x)的函数表为:
试用线性插值和抛物线插值分别计算f(3.27)的近似值并估计相应的误差。
解:线性插值需要两个节点,内插比外插好因为3.27 (3.2,3.3),故选x0=3.2,x1=3.3,由n=1的lagrange插值公式,有
所以有,为保证内插对抛物线插值,选取三个节点为x0=3.2,x1=3.3,x2=3.4,由n=2的lagrange插值公式有
故有
所以线性插值计算ln3.27的误差估计为
故抛物线插值计算ln3.27的误差估计为:
显然抛物线插值比线性插值精确;

5、样条插值:
样条插值是一种改进的分段插值。
定义 若函数在区间〖a,b〗上给定节点a=x0<x1<;…<xn=b及其函数值yj,若函数S(x)满足
⒈ S(xj)=yj,j=0,1,2,…,n;
插值法主要用于道路桥梁,机械设计,电子信息工程等 很多工科领域的优化方法。

⑷ 图像双三次插值算法原理及python实现

一. 图像双三次插值算法原理:

        假设源图像 A 大小为 m*n ,缩放后的目标图像 B 的大小为 M*N 。那么根据比例我们可以得到 B(X,Y) 在 A 上的对应坐标为 A(x,y) = A( X*(m/M), Y*(n/N) ) 。在双线性插值法中,我们选取 A(x,y) 的最近四个点。而在双立方插值法中,我们选取的是最近的16个像素点作为计算目标图像 B(X,Y) 处像素值的参数。如图所示:

        如图所示 P 点就是目标图像 B 在 (X,Y) 处对应于源图像中的位置,P 的坐标位置会出现小数部分,所以我们假设 P 的坐标为 P(x+u,y+v),其中 x,y 分别表示整数部分,u,v 分别表示小数部分。那么我们就可以得到如图所示的最近 16 个像素的位置,在这里用 a(i,j)(i,j=0,1,2,3) 来表示。 

        双立方插值的目的就是通过找到一种关系,或者说系数,可以把这 16 个像素对于 P 处像素值的影响因子找出来,从而根据这个影响因子来获得目标图像对应点的像素值,达到图像缩放的目的。 

        BiCubic基函数形式如下:

二. python实现双三次插值算法

from PIL import Image

import numpy as np

import math

# 产生16个像素点不同的权重

def BiBubic(x):

    x=abs(x)

    if x<=1:

        return 1-2*(x**2)+(x**3)

    elif x<2:

        return 4-8*x+5*(x**2)-(x**3)

    else:

        return 0

# 双三次插值算法

# dstH为目标图像的高,dstW为目标图像的宽

def BiCubic_interpolation(img,dstH,dstW):

    scrH,scrW,_=img.shape

    #img=np.pad(img,((1,3),(1,3),(0,0)),'constant')

    retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

    for i in range(dstH):

        for j in range(dstW):

            scrx=i*(scrH/dstH)

            scry=j*(scrW/dstW)

            x=math.floor(scrx)

            y=math.floor(scry)

            u=scrx-x

            v=scry-y

            tmp=0

            for ii in range(-1,2):

                for jj in range(-1,2):

                    if x+ii<0 or y+jj<0 or x+ii>=scrH or y+jj>=scrW:

                        continue

                    tmp+=img[x+ii,y+jj]*BiBubic(ii-u)*BiBubic(jj-v)

            retimg[i,j]=np.clip(tmp,0,255)

    return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiCubic_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('BiCubic_interpolation.jpg')

三. 实验结果:

四. 参考内容:

         https://www.cnblogs.com/wojianxin/p/12516762.html

         https://blog.csdn.net/Ibelievesunshine/article/details/104942406

热点内容
诺安成长与鑫灵活配置哪个好 发布:2025-01-31 19:58:54 浏览:604
b树磁盘存储 发布:2025-01-31 19:42:53 浏览:837
联想小新air15怎么配置环境 发布:2025-01-31 19:06:57 浏览:968
什么配置玩3a 发布:2025-01-31 19:05:22 浏览:586
phpoa系统 发布:2025-01-31 18:58:42 浏览:10
值e的编程 发布:2025-01-31 18:57:06 浏览:977
安卓手机的软件认证在哪里 发布:2025-01-31 18:57:01 浏览:535
android弹出来 发布:2025-01-31 18:56:56 浏览:232
办公室白领新解压方法 发布:2025-01-31 18:55:23 浏览:558
摩斯密码短长是什么意思 发布:2025-01-31 18:50:17 浏览:587