当前位置:首页 » 操作系统 » 各种排序算法比较

各种排序算法比较

发布时间: 2023-09-02 04:46:24

‘壹’ 各种排序算法实现和比较

1、 堆排序定义
n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
注意:
①堆中任一子树亦是堆。
②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
3、堆排序特点
堆排序(HeapSort)是一树形选择排序。
堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(或最小)的记录。
4、堆排序与直接插入排序的区别
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
5、堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
(3)堆排序的算法:
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元
int i;
BuildHeap(R); //将R[1-n]建成初始堆
for(i=n;i1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换
Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函数的实现
因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。
① Heapify函数思想方法
每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。
"筛选法"调整堆
R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。因此,有人将此方法称为"筛选法"。
具体的算法
②BuildHeap的实现
要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。
显然只有一个结点的树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。这样,我们只需依次将以序号为 , -1,…,1的结点作为根的子树都调整为堆即可。
具体算法。
5、大根堆排序实例
对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见。
6、 算法分析
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。
由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
堆排序是就地排序,辅助空间为O(1),
它是不稳定的排序方法。

‘贰’ 数据结构中比较各种排序算法 求详解 ,,,,,,,,,,

排序算法包括:插入排序、交换排序、选择排序以及合并排序。

其中插入排序包括直接插入排序和Shell排序,交换排序包括冒泡排序和分化交换排序,选择排序包括直接选择排序和堆排序。

这些排序算法中,直接插入排序、冒泡排序和直接选择排序这三种排序的算法平均时间复杂度是O(n的平方);分化交换排序、堆排序和合并排序这三种排序的算法平均时间复杂度是

‘叁’ 各种排序算法最好和最坏情况比较

最坏情况下比较次数最少的为D)堆排序:
A)冒泡排序 需要比较O(n^2)次(n(n - 1)/2次),即序列逆序的情况
B)简单选择排序,无论是否最坏都需要O(n^2)次(n(n - 1)/2次)
C)直接插入排序,最坏情况需要比较O(n^2)次(n(n - 1)/2次)
D)堆排序,无论是否最坏比较O(nlog2n)次
E)快速排序,最坏情况退化为冒泡排序,需要比较O(n^2)次(n(n - 1)/2次)

‘肆’ 几种排序算法的比较

一、八大排序算法的总体比较

4.3、堆的插入:

每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,然后将这个新数据插入到这个有序数据中

(1)用大根堆排序的基本思想

先将初始数组建成一个大根堆,此对为初始的无序区;

再将最大的元素和无序区的最后一个记录交换,由此得到新的无序区和有序区,且满足<=的值;

由于交换后新的根可能违反堆性质,故将当前无序区调整为堆。然后再次将其中最大的元素和该区间的最后一个记录交换,由此得到新的无序区和有序区,且仍满足关系的值<=的值,同样要将其调整为堆;

..........

直到无序区只有一个元素为止;

4.4:应用

寻找M个数中的前K个最小的数并保持有序;

时间复杂度:O(K)[创建K个元素最大堆的时间复杂度] +(M-K)*log(K)[对剩余M-K个数据进行比较并每次对最大堆进行从新最大堆化]

5.希尔排序

(1)基本思想

先将整个待排序元素序列分割成若干子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序(因为直接插入排序在元素基本有序的情况下,效率很高);

(2)适用场景

比较在希尔排序中是最主要的操作,而不是交换。用已知最好的步长序列的希尔排序比直接插入排序要快,甚至在小数组中比快速排序和堆排序还快,但在涉及大量数据时希尔排序还是不如快排;

6.归并排序

(1)基本思想

首先将初始序列的n个记录看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2的有序子序列,在此基础上,再对长度为2的有序子序列进行两两归并,得到若干个长度为4的有序子序列,以此类推,直到得到一个长度为n的有序序列为止;

(2)适用场景

若n较大,并且要求排序稳定,则可以选择归并排序;

7.简单选择排序

(1)基本思想

第一趟:从第一个记录开始,将后面n-1个记录进行比较,找到其中最小的记录和第一个记录进行交换;

第二趟:从第二个记录开始,将后面n-2个记录进行比较,找到其中最小的记录和第2个记录进行交换;

...........

第i趟:从第i个记录开始,将后面n-i个记录进行比较,找到其中最小的记录和第i个记录进行交换;

以此类推,经过n-1趟比较,将n-1个记录排到位,剩下一个最大记录直接排在最后;

‘伍’ 常见的几种排序算法总结

对于非科班生的我来说,算法似乎对我来说是个难点,查阅了一些资料,趁此来了解一下几种排序算法。
首先了解一下,什么是程序

关于排序算法通常我们所说的往往指的是内部排序算法,即数据记录在内存中进行排序。
排序算法大体可分为两种:
一种是比较排序,时间复杂度O(nlogn) ~ O(n^2),主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。
另一种是非比较排序,时间复杂度可以达到O(n),主要有:计数排序,基数排序,桶排序等

冒泡排序它重复地走访过要排序的元素,一次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。

选择排序类似于冒泡排序,只不过选择排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然后再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾,以此类推,直到所有元素均排序完毕。

插入排序比冒泡排序和选择排序更有效率,插入排序类似于生活中抓扑克牌来。
插入排序具体算法描述,以数组[3, 2, 4, 5, 1]为例。

前面三种排序算法只有教学价值,因为效率低,很少实际使用。归并排序(Merge sort)则是一种被广泛使用的排序方法。
它的基本思想是,将两个已经排序的数组合并,要比从头开始排序所有元素来得快。因此,可以将数组拆开,分成n个只有一个元素的数组,然后不断地两两合并,直到全部排序完成。
以对数组[3, 2, 4, 5, 1] 进行从小到大排序为例,步骤如下:

有了merge函数,就可以对任意数组排序了。基本方法是将数组不断地拆成两半,直到每一半只包含零个元素或一个元素为止,然后就用merge函数,将拆成两半的数组不断合并,直到合并成一整个排序完成的数组。

快速排序(quick sort)是公认最快的排序算法之一,有着广泛的应用。
快速排序算法步骤

参考:
常用排序算法总结(一)
阮一峰-算法总结

热点内容
sqlifthen男女 发布:2025-02-01 01:44:59 浏览:690
幻灵和安卓哪个互通 发布:2025-02-01 01:43:33 浏览:648
电脑配置够但为什么打lol掉帧 发布:2025-02-01 01:37:08 浏览:316
21款朗逸哪个配置比较划算 发布:2025-02-01 01:35:32 浏览:976
建筑动画片脚本 发布:2025-02-01 01:35:21 浏览:469
管家婆如何用阿里云服务器 发布:2025-02-01 01:29:09 浏览:649
解压耳放 发布:2025-02-01 01:20:18 浏览:175
cars算法 发布:2025-02-01 01:02:26 浏览:177
数据库超载 发布:2025-02-01 00:57:15 浏览:33
fgo安卓如何玩日服 发布:2025-02-01 00:49:40 浏览:715