带有回溯算法
❶ 回溯算法的基本思想
回溯算法也叫试探法,它是慎枯一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。
❷ 请问什么是回溯算法
回溯(backtracking)是一种系统地搜索问题解答的方法。为了实现回溯,首先需要为问题定义一个解空间(solution space),这个空间必须至少包含问题的一个解(可能是最优的)。
下一步是组织解空间以便它能被容易地搜索。典型的组织方法是图(迷宫问题)或树(N皇后问题)。
一旦定义了解空间的组织方法,这个空间即可按深度优先的方法从开始节点进行搜索。
回溯方法的步骤如下:
1) 定义一个解空间,它包含问题的解。
2) 用适于搜索的方式组织该空间。
3) 用深度优先法搜索该空间,利用限界函数避免移动到不可能产生解的子空间。
回溯算法的一个有趣的特性是在搜索执行的同时产生解空间。在搜索期间的任何时刻,仅保留从开始节点到当前节点的路径。因此,回溯算法的空间需求为O(从开始节点起最长路径的长度)。这个特性非常重要,因为解空间的大小通常是最长路径长度的指数或阶乘。所以如果要存储全部解空间的话,再多的空间也不够用。
❸ 常见算法思想6:回溯法
回溯法也叫试探法,试探的处事方式比较委婉,它先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一进行枚举和检验。当发现当前候选解不可能是正确的解时,就选择下一个候选解。如果当前候选解除了不满足问题规模要求外能够满足所有其他要求时,则继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在试探算法中,放弃当前候选解,并继续寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。
(1)针对所给问题,定义问题的解空间。
(2)确定易于搜索的解空间结构。
(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
回溯法为了求得问题的正确解,会先委婉地试探某一种可能的情况。在进行试探的过程中,一旦发现原来选择的假设情况是不正确的,马上会自觉地退回一步重新选择,然后继续向前试探,如此这般反复进行,直至得到解或证明无解时才死心。
下面是回溯的3个要素。
(1)解空间:表示要解决问题的范围,不知道范围的搜索是不可能找到结果的。
(2)约束条件:包括隐性的和显性的,题目中的要求以及题目描述隐含的约束条件,是搜索有解的保证。
(3)状态树:是构造深搜过程的依据,整个搜索以此树展开。
下面是影响算法效率的因素:
回溯法搜索解空间时,通常采用两种策略避免无效搜索,提高回溯的搜索效率:
为缩小规模,我们用显示的国际象棋8*8的八皇后来分析。按照国际象棋的规则,皇后的攻击方式是横,竖和斜向。
皇后可以攻击到同一列所有其它棋子,因此可推导出每1列只能存在1个皇后,即每个皇后分别占据一列。棋盘一共8列,刚好放置8个皇后。
为了摆放出满足条件的8个皇后的布局,可以按如下方式逐步操作:
把规模放大到N行N列也一样,下面用回溯法解决N皇后问题:
执行:
❹ 回溯算法(C/C++)
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。许多复杂的,规模较大的问题都可以使用回溯法。
回溯算法类似于枚举的过程,当搜索时遇到不满足条件,回退到上一个,尝试别的路径。
回溯是递归的产物,有递归一定有回溯。
回溯算法并不是什么高效的算法,因为本质上时去遍历所有元素,找出所有可能,然后选出需要的答案。那为什么还要回溯法,简单来说,不是所有的问题都能用什么巧妙的方法来解决的,有些问题你能暴力求解出来就不错了。
这里是综合了一下参考的别人写的,有这么几种情况适合回溯法解决:
回溯法使用多了不难发现,回溯法的问题都可以抽象转换为树型结构,你可以画一棵树来分析这类问题,因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。因为递归就要有终止条件,所以必然是一颗高度有限的树(N叉树)。
for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是"0.011.255.245"、"192.168.1.312" 和 "[email protected]" 是 无效的 IP 地址。
问题想到用for可以解,但是这要多少层for啊,我们试一下回溯的方法。
1.首先确定参数
全局变量数组path存放切割后回文的子串,二维数组result存放结果集。本题递归函数参数还需要startIndex,因为切割过的地方,不能重复切割,和组合问题也是保持一致的。如果是一个集合来求组合的话,就需要startIndex,startIndex来控制for循环的起始位置。
2.递归终止条件
本题明确要求只会分成4段,所以用分割的段数作为终止条件。pointNum表示点的数量,pointNum为3说明字符串分成了4段了。然后验证一下第四段是否合法,如果合法就加入到结果集里。
3.单层搜索的逻辑
在for (int i = startIndex; i < s.size(); i++)循环中 [startIndex, i]这个区间就是截取的子串,需要判断这个子串是否合法。
如果合法就在字符串后面加上符号.表示已经分割。
如果不合法就结束本层循环,剪掉此分支。
然后就是递归和回溯的过程,递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。
文章参考: https://mp.weixin.qq.com/s/gjSgJbNbd1eAA5WkA-HeWw
https://mp.weixin.qq.com/s/v--VmA8tp9vs4bXCqHhBuA
https://www.jianshu.com/p/4abfd96d91e6
❺ 五大基本算法——回溯法
回溯法是一种选优搜索法(试探法)。
基本思想:将问题P的状态空间E表示成一棵高为n的带全有序树T,把求解问题简化为搜索树T。搜索过程采用 深度优先搜索 。搜索到某一结点时判断该结点是否包含原问题的解,如果包含则继续往下搜索,如果不包含则向祖先回溯。
通俗来说,就是利用一个树结构来表示解空间,然后从树的根开始深度优先遍历该树,到不满足要求的叶子结点时向上回溯继续遍历。
几个结点:
扩展结点:一个正在产生子结点的结点称为扩展结点
活结点:一个自身已生成但未全部生成子结点的结点
死结点:一个所有子结点已全部生成的结点
1、分析问题,定义问题解空间。
2、根据解空间,确定解空间结构,得 搜索树 。
3、从根节点开始深度优先搜索解空间(利用 剪枝 避免无效搜索)。
4、递归搜索,直到找到所要求的的解。
1、子集树
当问题是:从n个元素的集合S中找出满足某种性质的子集时,用子集树。
子集树必然是一个二叉树。常见问题:0/1背包问题、装载问题。
遍历子集树时间复杂度:O(2^n)
2、排列树
当问题是:确定n个元素满足某种排列时,用排列数。常见问题:TSP旅行商问题,N皇后问题。
遍历排列树时间复杂度:O(n!)
通俗地讲,结合Java集合的概念,选择哪种树其实就是看最后所得结果是放入一个List(有序)里,还是放入一个Set(无序)里。
剪枝函数能极大提高搜索效率,遍历解空间树时,对于不满足条件的分支进行剪枝,因为这些分支一定不会在最后所求解中。
常见剪枝函数:
约束函数(对解加入约束条件)、限界函数(对解进行上界或下界的限定)
满足约束函数的解才是可行解。
1、0/1背包问题
2、TSP旅行商问题
3、最优装载问题
4、N-皇后问题
具体问题可网络详细内容。
❻ 回溯算法与贪心算法
回溯是递归的副产品,只要有递归就会有回溯 ,所以回溯法也经常和二叉树遍历,深度优先搜索混在一起,因为这两种方式都是用了递归。
回溯法就是暴力搜索,并不是什么高效的算法,最多再剪枝一下。
回溯算法能解决如下问题:
组合问题:N个数里面按一定规则找出k个数的集合
排列问题:N个数按一定规则全排列,有几种排列方式
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
棋盘问题:N皇后,解数独等等
回溯算法的本质是纵向遍历
回溯算法模板为
贪心的本质是选择每一阶段的局部最优,从而达到全局最优
贪心算法一般分为如下四步:
将问题分解为若干个子问题
找出适合的贪心策略
求解每一个子问题的最优解
将局部最优解堆叠成全局最优解
eg:摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 2:
输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。