赌轮算法
❶ 轮盘赌算法缺点
轮盘赌算法缺点是不稳定。轮盘赌算法在特殊情况会变得十分不稳定,就是迭代结束之后,种群适应度总和甚至会比初始种群还低,导致算法的奔溃。
❷ 染色体个数的多少对遗传算法优化的结果是否有影响
自适应遗传算法
上回文说到基于误差梯度下降的BP网络算法容易陷入局部极小,通常的改进方法先使用遗传算法生成比较好的权重值,再交给神经网络训练。
遗传算法随着进化的进行,其选择率、交叉算子、变异率应该是动态改变的。
编码方式
在使用BP网络进行文本分类时,大都是采用实数编码,把权值设为[0,1]上的实数,这是因为要使用权值调整公式要求权值是实数。但是在使用遗传算法优化这些权值时,完全可以把它们编码为整数。比如设为[1,64]上的整数,一个权值只有64种选择,而[0,1]上的实数有无穷多个,这样既可以缩小搜寻的范围,同时也加大了搜寻的步长。毕竟BP网络中很多个极小点,使用遗传的目的只是在全局找个一个比较优的解,进一步的精确寻优交给BP神经网络来做。
选择算子
在进化初期我们应该使用较小的选择压力,以鼓励种群向着多样化发展;在进化后期个体差异不大,适应度都很高,这时应增大选择压力以刺激进化速度。可以使用模拟退火(SA,simulated annealing)来决定选择率,即我们以一定的概率来接收不好的个体:
这是模拟退火的原始表达式,意思是说在金属退火的过程中,其能量在降低(<0),我们以的概率接收本次变化,显然当温度T越低时,接收概率越大,温度T越高时,接收概率越小,k是常数。对应到遗传算法,就是当种群平均适应值越低时,接收劣等个体的概率越高,当种群平均适应值越高时,接收劣等个体的概率越小。
另外M.Srinivas提出当群体适应度比较集中时,使交叉概率增大;当群体适应度比较分散时,使交叉概率减小。种群适应度分散与否通过最大、最小和平均适应度来衡量。
选择算子是保证遗传算法能找到近优解的唯一手段,当染色体唯度很高时,遗传算法很难找到较好的解。这是因为最开始生成的初始种群适应度都极其的低,个体之间(适应度)差异不大,如果使用锦标赛选择法则跟随机选择无异,即使使用赌轮法选择到最优个体的概率会大增加,但是最优个体也不比最劣个体好到哪儿去,最优个体也不含有优良的基因片段。所以对于高维数据,在进化初期主要靠交叉进行全局搜索来搜寻较优的个体。
交叉算子
交叉实际上就是在进行全局搜索,所以遗传算法不过是穷举算法的一个变种。在进化初期,种群多样性高,采用单点交叉就可以获得较广的搜索空间;在进化后期,个体差异不大,需要采用多点交叉,或者有人采用变异交叉点的方法。
当发现种群的适应度操持不变时,可能已经进入了局部最优,应该变异交叉点,大步跨出当前的小山峰。
由于要保留精英个体,所以交叉要以一定的概率进行。随着进化的进行,交叉率应逐渐降低趋于某个值,以避免算法不收敛。
变异算子
直观上对好的个体应施以较小的变异率,对劣等个体应施以较大的变异率。
当发现种群的适应度在降低时应增大变异率。
另外M.Srinivas提出当群体适应度比较集中时,使变异概率增大;当群体适应度比较分散时,使变异概率减小。种群适应度分散与否通过最大、最小和平均适应度来衡量。
下面的代码是用遗传算法来为BP网络寻找比较好的初始解。但是遗传算法根本就没有起到作用,因为我的神经网络输入层1000个节点,隐藏层20个节点,这就2万个权值了,也就是说染色体的长度在2万维以上,用遗传算法根本就找不到较优解,它始终是在随机地遍历,一点儿没有想“进化”的意思。
❸ 轮盘赌算法是什么,请教高人指点,越详细越好
每一个种类的算法都不同,没有绝对的。
(1vw。xyz )详细的规则的话页面上也有着。
❹ 请用MATLAB模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率。请问随着试验次数的增加,这些概率
disp(['开始请输入yes,不开始请输入NO']);
kaishi=input('开始吗?','s');
if kaishi=='yes'
a1=1+(6-1)*round(rand(1));
a2=1+(6-1)*round(rand(1));
a3=a1+a2;
if a3==3||a3==11
disp(['打赌者赢了']);
disp(['因为第一个骰子值=',num2str(a1),';第二个的=',num2str(a2),';两个之和=',num2str(a3)]);
elseif a3==2||a3==7||a3==12
disp(['打赌者输了']);
disp(['因为第一个骰子值=',num2str(a1),';第二个的=',num2str(a2),';两个之和=',num2str(a3)]);
elseif a3==4||a3==5||a3==6||a3==8||a3==9||a3==10
k=a3;
k1=1;
while k>0
k1=k1+1;
disp(['第',num2str(k1-1),'次丢的结果:','第一个骰子值=',num2str(a1),';第二个的=',num2str(a2),';两个之和=',num2str(a3)]);
disp(['未分出输赢,继续丢,【已丢了',num2str(k1-1),'次】']);
a1=1+(6-1)*round(rand(1));
a2=1+(6-1)*round(rand(1));
a3=a1+a2;
if a3==k
disp(['哈哈,打赌者赢了']);
disp(['因为第',num2str(k1),'次丢的结果是:','第一个骰子值=',num2str(a1),';第二个的=',num2str(a2),';两个之和=',num2str(a3)]);
break;
elseif a3==7
disp(['唉,打赌者输了']);
disp(['因为第',num2str(k1),'次丢的结果是:','第一个骰子值=',num2str(a1),';第二个的=',num2str(a2),';两个之和=',num2str(a3)]);
break;
end
end
end
end
❺ 如何用遗传算法实现多变量的最优化问题
是不是像求函数最值那样子?建议你了解一下遗传算法的实数编码,这个对于求函数最值很方便,不用像二进制那样需要转换。
简单介绍一下思路:
最重要的是确定适应度函数,只要确定这个函数就很容易了,就用你不会编程,直接调用matlab的工具箱就行了。
1st.设置种群规模,并初始化种群p,并计算各个个体的适应度。
例如,20个个体,每个个体包含5个变量,x1,x2,x3,x4,x5.
如果你用matlab来编程的话,这个可以很容易实现,会用到random('unif',a,b)这个函数吧。
例如x1的取值范围是[0,1],那么x1=random('unif',0,1).
2nd.采用轮盘赌选出可以产生后代的父本,p_parents。
额,轮盘赌的实质就是适应度大的被选出的概率大。这个不难,但说起来比较长,你可以自己去看一下。
3rd.杂交过程的思路随机将p_parents中的个体随机两两配对,然后随机产生一个1到n的数(n为变量的个数),设为i,交换每对父本中i之后的变量值。交换以后的p_parents成为后代p_offspring.
这里变起来有点点复杂,不过只要耐心一点,编好配对过程和交换过程。
4th.变异过程,这个比较简单,不过需要自己把握的较好。
基本的思路是设置一个概率,例如0.05,然后产生一个随机数如果随机数比0.05小那么这个变量值就要产生微小的增加或减少。
这个变异过程要历遍p_offspring所有的变量喔。
5th.将p和p_offspring合并起来,然后选出适应度大的,重新构成一个如原始种群规模相等的种群。
❻ 遗传算法
遗传算法实例:
也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。
对于初学者,尤其是还没有编程经验的非常有用的一个文件
遗传算法实例
% 下面举例说明遗传算法 %
% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
% 编程
%-----------------------------------------------
% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。
% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和
% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值
% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';
% 2.4 选择复制
% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end
% 2.5 交叉
% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end
% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end
% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end
% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群体大小
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.001; %变异概率
pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %变异
[bestindivial,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end
fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off
[z index]=max(y); %计算最大值及其位置
x5=x(index)%计算最大值对应的x值
y=z
【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
打字不易,如满意,望采纳。