随机数的算法
Ⅰ python中的随机数是怎么实现的
PYTHON中的伪随机数发生器用的是梅森旋转算法。
梅森旋转算法(Mersenne twister)是一个伪随机数发生算法。由松本真和西村拓士在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。
梅森旋转算法是R、Python、Ruby、IDL、Free Pascal、PHP、Maple、Matlab、GNU多重精度运算库和GSL的默认伪随机数产生器。从C++11开始,C++也可以使用这种算法。
整个算法主要分为三个阶段:获得基础的梅森旋转链;对于旋转链进行旋转算法;对于旋转算法所得的结果进行处理。
算法实现的过程中,参数的选取取决于梅森素数,故此得名。
梅森素数由梅森数而来。所谓梅森数,是指形如2↑p-1的一类数,其中指数p是素数,常记为Mp 。如果梅森数是素数,就称为梅森素数。
例如4-1=3,8-1=7,16-1=15(不是素数),32-1=31,64-1=63(不是素数)等等。
Ⅱ 计算器如何产生随机数
一般计算机的随机数都是伪随机数,以一个真随机数(种子)作为初始条件,然后用一定的算法不停迭代产生随机数,下面介绍两种方法:
一般种子可以以当前的系统时间,这是完全随机的
。
算法1:平方取中法。
1)将种子设为X0,并mod 10000得到4位数
2)将它平方得到一个8位数(不足8位时前面补0)
3)取中间的4位数可得到下一个4位随机数X1
4)重复1-3步,即可产生多个随机数
这个算法的一个主要缺点是最终它会退化成0,不能继续产生随机数。
算法2:线性同余法
1)将种子设为X0,
2)用一个算法X(n+1)=(a*X(n)+b) mod c产生X(n+1)
一般将c取得很大,可产生0到c-1之间的伪随机数
该算法的一个缺点是会出现循环。
Ⅲ 详解随机数的生成
随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛绝喊雀算法会通过随机数采样等等。Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块。
下面介绍下Python内置的random模块的几种生并早成随机数渗租的方法。
1、random.random()随机生成 0 到 1 之间的浮点数[0.0, 1.0)。注意的是返回的随机数可能会是 0 但不可能为 1,即左闭右开的区间。
2、random.randint(a , b)随机生成 a 与 b 之间的整数[a, b],a<=n<=b,随机整数不包含 b 时[a, b)可以使用 random.randrange() 方法。
3、random.randrange(start,stop,step)按步长step随机在上下限范围内取一个随机数,start<=n<stop。
4、random.uniform(a, b)随机生成 a 与 b 之间的浮点数[a, b],a<=n<=b。
5、random.choice()从列表中随机取出一个元素,比如列表、元祖、字符串等。注意的是,该方法需要参数非空,否则会抛出 IndexError 的错误。
6、random.shuffle(items) 把列表 items 中的元素随机打乱。注意的是,如果不想修改原来的列表,可以使用 模块先拷贝一份原来的列表。
7、random.sample(items, n)从列表 items 中随机取出 n 个元素。
Python 的random模块产生的随机数其实是伪随机数,依赖于特殊算法和指定不确定因素(种子seed)来实现。如randint方法生成一定范围内的随机数,会先指定一个特定的seed,将seed通过特定的随机数产生算法,得到一定范围内随机分布的随机数。因此对于同一个seed值的输入产生的随机数会相同,省略参数则意味着使用当前系统时间秒数作为种子值,达到每次运行产生的随机数都不一样。
numpy库也提供了random模块,用于生成多维度数组形式的随机数。使用时需要导入numpy库。
下面介绍下numpy库的random模块的几种生成随机数的方法。
1、numpy.random.rand(d0,d1,…,dn)
2、numpy.random.randn(d0,d1,…,dn)
3、numpy.random.randint(low, high=None, size=None, dtype=’l’)
4、numpy.random.seed()
Ⅳ 51单片机如何生成随机数
用定时器加rand()随机函数来实现。
rnda=rand()%2;
rndb=rand()%3;
单片机上电之后通过按键去启动取随机数,若是单片机上电就立即取随机数的话,那每次上电随机的结果都是一样的。然后是0到9不重复的随机数,程序中用了循环来判断是否和前面取的随机数相同,相同则进入下次取随机数,不同则存入数组。
在程序中,用“#include<absacc.h>”即可使用其中定义的宏来访问绝对地址,包括CBYTE、XBYTE、PWORD、DBYTE、CWORD、XWORD、PBYTE、DWORD
具体使用可看一看absacc.h便知,例如:
rval=CBYTE[0x0002];指向程序存贮器的0002h地址
rval=XWORD[0x0002];指向外RAM的0002h地址
_at_关键字
直接在数据定义后加上_at_ const即可,但是注意:
(1)绝对变量不能被初使化;
(2)bit型函数及变量不能用_at_指定。
例如:
idata struct link list _at_ 0x40;指定list结构从40h开始。
xdata char text[25b] _at_0xE000;指定text数组从0E000H开始
提示:如果外部绝对变量是I/O端口等可自行变化数据,需要使用volatile关键字进行描述,请参考absacc.h。
(4)随机数的算法扩展阅读:
统计学伪随机性。统计学伪随机性指的是在给定的随机比特流样本中,1的数量大致等于0的数量,同理,“10”“01”“00”“11”四者数量大致相等。类似的标准被称为统计学随机性。满足这类要求的数字在人类“一眼看上去”是随机的。
密码学安全伪随机性。其定义为,给定随机样本的一部分和随机算法,不能有效的演算出随机样本的剩余部分。
真随机性。其定义为随机样本不可重现。实际上只要给定边界条件,真随机数并不存在,可是如果产生一个真随机数样本的边界条件十分复杂且难以捕捉(比如计算机当地的本底辐射波动值),可以认为用这个方法演算出来了真随机数。
Ⅳ 结合生活中的实例,描述求解随机数的算法流程图
生活中的实例:一个老太太买白菜,她给挑出的10棵白菜排一下序,然后她拿出了随身携带的笔记本电脑,输入 。
#include "stdio.h"
#define N 10
main()
{
int a[N];
int i,j,p,temp;
for(i=0;iscanf("%d",&a[i]);
for(i=0;i{
p=i; for(j=i+1;jif(a[j]temp=a[i];a[i]=a[p];a[p]=temp;
}
printf(" ");
for(i=0;iprintf("%d ",a[i]);
}
然后得到了白菜的重量排序。
传统的流程图用流程线指出各框的执行顺序,对流程线的使用没有严格限制。因此,使用者可以毫不受限制地使流程随意地转来转去,使流程图变得毫无规律,阅读者要花很大精力去追踪流程,使人难以理解算法的逻辑。
如果我们写出的算法能限制流程的无规律任意转向,而像一本书那样,由各章各节顺序组成,那样,阅读起来就很方便,不会有任何困难,只需从头到尾顺序地看下去即可。
为了提高算法的质量,使算法的设计和阅读方便,必须限制箭头的滥用,即不允许无规律地使流程乱转向,只能按顺序地进行下去。但是,算法上难免会包含一些分支和循环,而不可能全部由一个一个框顺序组成。
如上例不是由各框顺序进行的,包含一些流程的向前或向后的非顺序转移。为了解决这个问题,人们设想,如果规定出几种基本结构,然后由这些基本结构按一定规律组成一个算法结构,整个算法的结构是由上而下地将各个基本结构顺序排列起来的。
1966年,Bohra和Jacoplni提出了以下三种基本结构,用这三种基本结构作为表示一个良好算法的基本单元。
Ⅵ 随机算法原理
展开专栏
登录
企鹅号小编
5.7K 篇文章
关注
详解各种随机算法
2018-02-06阅读 1.4K0
转自:JarvisChu
之前将的算法都是确定的,即对于相同的输入总对应着相同的输出。但实际中也常常用到不确定的算法,比如随机数生成算法,算法的结果是不确定的,我们称这种算法为(随机)概率算法,分为如下四类:
1、数值概率算法
用于数值问题的求解,通常是近似解
2、蒙特卡洛算法Monte Carlo
能得到问题的一个解,但不一定是正确解,正确的概率依赖于算法运行的时间,算法所用的时间越多,正确的概率也越高。求问题的准确解;
3、拉斯维加斯算法 Las Vegas
不断调用随机算法求解,直到求得正确解或调用次数达到某个阈值。所以,如果能得到解,一定是正确解。
4、舍伍德算法 Sherwood
利用随机算法改造已有算法,使得算法的性能尽量与输入数据无关,即平滑算法的性能。它总能求得问题的一个解,且求得的解总是正确的。
随机数
概述
计算机产生的随机数都是伪随机数,通过线性同余法得到。
方法:产生随机序列
d称为种子;m取值越大越好;m,b互质,常取b为质数;